

Modeling Reinforced Concrete Protective Construction for Impact Scenarios

International Explosives Safety Symposium and Exhibition

August 9, 2018

Brad Durant (NAVFAC EXWC) Michael Oesterle, PhD, PE (NAVFAC EXWC) Joseph Magallanes, PE, SE (Karagozian and Case)

Introduction

- Protective construction for explosives safety compliance
- Challenges associated with modeling concrete structures subjected to large debris impact
- Use of a high-fidelity physics-based code (LS-DYNA) to simulate impact into high-strength concrete
- Performance comparison of several concrete models against laboratory test data (quasi-static and impact)
- Correlations between material model fits to quasi-static test data and ability to simulate response to impact loading

Protective Construction for Explosives Safety Compliance

- Separation distance vs. protective construction
- DoD Manual 6055.09-M references UFC 3-340-02 for protective construction analysis procedures
 - Documented methods for blast and primary fragments
 - Gap in criteria for large debris impact hazards

Protective Construction for Explosives Safety Compliance

Case Study – Roof Beam Impact on Occupied Building

- Hazard:

- Accidental blast in building with structural steel framing
- Failure of connections at roof beam-column joints
- Trajectory analysis of roof beam shows impact at nearby occupied building

- Analysis Results:

- Global roof slab deflection is acceptable based on flexural response
- Conservative local impact analysis shows slab perforation

-Challenges:

- Estimating duration of impact load
- Energy absorption due to beam deformation, etc.

Concrete Modeling for Impact Loading

- The material model should be capable of handling...
 - -Complex states of stress
 - -Large deformations
 - -Material discontinuities (cracking)
 - -High strain rates
- The model strength envelope should be a function of...
 - -Pressure
 - -Volumetric compaction
 - -Dilatancy due to shearing
 - -Brittle and ductile material responses
 - -Strain rate effects

Material models evaluated in this study

-Using automatic parameter generation:

- K&C Concrete Model, Rel. 3 (*MAT_CONCRETE_DAMAGE_REL3)
- Continuous Surface Cap Model (*MAT_CSCM)
- Riedel-Hiermaier-Thoma Model (*MAT_RHT)
- Winfrith Concrete Model (*MAT_WINFRITH_CONCRETE) [quasi-static only]

-Using parameters fit to material test data:

- Johnson-Holmquist Model (*MAT_JOHNSON_HOLMQUIST_CONCRETE)
- •K&C Concrete Model, Rel. 4

Material test data (quasi-static)

Experimental Test Data

Projectile impact test data

Test	Result
1	Projectile Perforation with Exit Velocity = 6% of Impact Velocity
2	Depth of Penetration = 97% of Slab Depth (No Perforation)

LS-DYNA Single Element Simulations

Single cube elements subjected to:

- -Hydrostatic compression
- -Unconfined compression
- -Uniaxial tension
- -Triaxial compression
- Symmetry condition at 3 faces
- Single integration point
- Quasi-static loading (no rate effects)

Triaxial Compression with 4x Confining Pressure

- Impact normal to slab
- Quarter-symmetry
- Slab model is solid (Lagrangian) elements
- Adaptive mesh around line of impact (Lagrangian to SPH)

NAVFAC EXWC: Technology Driven, Warfighter Focused

Test 1 Simulation: K&C Release 4

LS-DYNA keyword deck by LS-PrePost Time = 0

X

Test 1 Simulations: Final Damage Contours

Test Result: $\frac{Exit \ Velocity}{Impact \ Velocity} = 0.06$ (Perforation)

NAVFAC EXWC: Technology Driven, Warfighter Focused

Test 1 Simulation: K&C Release 4 Damage

Test 1 displacement and velocity plots

Test 2 Simulation: K&C Release 4

LS-DYNA keyword deck by LS-PrePost Time = 0

× L×

Test 2 Simulations: Final Damage Contours

Test 2 Simulation: K&C Release 4 Damage

Test 2 displacement and velocity plots

Summary of Test 1 and Test 2 Results

Test	Material Model	Simulation Result*	Experimental Result
1	K&C Rel. 3 Auto	DOP / DS = 0.56	VE / VI = 0.06
	CSCM Auto	VE / VI = 0.58	
	RHT Auto	VE / VI ≈ 0 – 0.2 **	
	JHC Fit	DOP / DS = 0.46	
	K&C Rel. 4 Fit	VE / VI = 0.14	
2	K&C Rel. 3 Auto	DOP / DS = 0.46	
	CSCM Auto	VE / VI = 0.45	
	RHT Auto	DOP / DS ≈ 0.7 – 0.8 **	DOP / DS = 0.97
	JHC Fit	DOP / DS = 0.57	
	K&C Rel. 4 Fit	DOP / DS = 0.85	

* VE = Exit Velocity; VI = Impact Velocity; DOP = Depth of Penetration; DS = Slab Depth ** Range estimated based on observed trends in simulation results up to point of memory error

Observations

- The observed correlation between better fits to quasi-static material test data and better ability to simulate impact is not unexpected
- K&C Release 4
 - -Best fit to quasi-static material test data of all models
 - -Best results in impact simulations
- RHT
 - Best fit to quasi-static material test data of all automatic parameter generation models
 - Projectile displacement and velocity trends show that RHT would likely have produced the best impact simulation results of all automatic parameter generation models in absence of memory error
- CSCM
 - Concrete strength was likely too high for use with the automatic parameter generation feature (supported by results and literature)

Conclusions

- High-fidelity physics-based software tools are capable of accurately simulating impact and penetration into reinforced concrete protective construction when care is taken by the analyst to properly model the material.
- Software users should exercise extreme caution when considering the use of automatically generated material parameters for problems involving impact into high-strength concrete. It is recommended that models be fit to material test data as much as possible.
- Once a model is fit to test data, users should take the necessary steps to be aware of the limitations of the model and the fit for their specific application.

Thank You