

2018 International Explosives Safety Symposium and Exposition

Design Factor Influences on Total Determined Explosives Site Risk

Jason R. Florek, Ph.D., P.E.

August 8, 2018

Conventional Q-D Siting

- Generally separate Exposed Site (ES) buildings from Potential Explosion Site (PES) buildings by standoff KW^{1/3}:
 - K6/K11: InterMagazine Distance (IMD);
 - K9/K18: IntraLine Distance (ILD);
 - K24/K30: Public Traffic Route Distance (PTRD);
 - K40/K50: Inhabited Building Distance (IBD).
- These distances correspond to:
 - Free-field overpressure;
 - Rough expected level of damage for the ES.
- However, IBD may default to Hazardous Fragment Distance (HFD) controlled by debris generated at the PES.

Note: W in pounds, KW^{1/3} in feet.

Comparisons of K40 to HFD

K40 Separation (1.2 psi)

- 46 feet for 10 pounds.
- 186 feet for 100 pounds.
- **400 feet** for 1000 pounds.
- 862 feet for 10,000 pounds.

HFD

- 474 feet for open PES,
 200 feet for structured PES with 10 pounds.
- 658 feet for 100 pounds.
- **1250 feet** for 1000 pounds.
- 1250 feet for 10,000 pounds.
- For these example cases, HFD ranges from **1.5x** to over **10x** K40 separation.
- If space on the site is at a premium, it may be difficult to achieve default HFDs.

Alternative Siting Options

- Reduce charge size at PES to achieve lower default HFDs.
- Analyze PES and determine more precise value of HFD based on primary/secondary fragments generated.
- Provide barriers as needed to reduce projection of hazardous fragments.
- Harden PES and/or ES.
- Use risk-based siting approach.

Risk-Based Siting Requirements

- Per **DoDM 6055.09-M-V6**, a waiver/exemption must be in place for proposed siting approach.
- Use approved code/analysis tool or equivalent methodology.
 - Refer to **DDESB Technical Paper 14**.
- Accept the risks not evaluated by approved code (e.g., facilities, equipment, assets, and mission).

Risk-Based Siting Acceptance Criteria

Table V6.E5.T7 from DoDM 6055.09-M-V6

Risk to:	Criteria:
Any one related individual – Related $P_{\rm f}$	$\leq 1 \times 10^{-4}$ per year
All related individuals – Related E_{f}	$\leq 1 \times 10^{-3}$ per year
Any one unrelated individual – Unrelated $P_{\rm f}$	$\leq 1 \times 10^{-6}$ per year
All unrelated individuals – Unrelated $E_{\rm f}$	$\leq 1 \times 10^{-5}$ per year

- *P_f* is probability of fatality (individual)
- E_f is expected fatalities (group)
- While these criteria are developed from understandable probability concepts, they do not readily relate to typical deterministic blast response criteria.

Building Damage: Support Rotation & Ductility

- These two most commonly used response criteria in blast design are typically linked to an SDOF model.
- **Support Rotation:** Measures maximum deflection relative to geometry (angle formed at peak response)

- **Ductility:** Ratio of maximum deflection to elastic limit deflection (denoted as μ)
 - Value less than unity denotes elastic response
 - Value greater than unity denotes plastic response

Sample Response Limits (PDC)

Flexural Component	Damage Levels						
	Superficial		Moderate		Heavy		
	μ_{max}	θ _{max}	μ_{max}	θ _{max}	μ_{max}	θ_{max}	
Reinforced Concrete Slab	1	-	-	2 °	-	5°	
(No Shear Reinf.)							
Compact Hot- Rolled Steel Beam	1	-	3	3 °	12	10°	
Cold-Formed Girt/Purlin	1	-	-	3°	-	10°	
Wood Stud	1	-	2	-	3	-	

Security Engineering 2018 International Explosives Safety Symposium and Exposition

Sample Component Damage Levels (PDC)

- Superficial: Component has no visible permanent damage
- Moderate: Component has some permanent deflection
 - Generally repairable, but replacement may be more economical and aesthetical
- Heavy: Component has not failed, but has significant permanent deflections making it unrepairable
- Component damage levels can be translated into an overall building damage level, which can be correlated to a probability of fatality.

Component Pressure-Impulse Diagrams

Note: Logarithmic Scale

Ref: PDC-TR 06-08

Security Engineering 2018 International Explosives Safety Symposium and Exposition

Building Pressure-Impulse Diagrams

Security Engineering 2018 International Explosives Safety Symposium and Exposition

Other Items that Contribute to P_f

- Overpressure effects
 - Lung rupture, whole body displacement, and skull fracture
- Projected glazing hazards within ES
- Projected debris from PES
 - Primary/secondary fragments and crater ejecta
- Probability of an event occurring
- Uncertainty multipliers

Key Questions

- How much influence do each of these factors have on the calculated risk?
- How can each significant source of risk be effectively mitigated in order to satisfy acceptance criteria?

Analysis Assumptions

- Limited variation of parameters:
 - Two HD 1.1 charge weights in bulk/light case
 - No thermal component to risk
- Consider the following cases:
 - New PES impacting an existing ES;
 - Existing PES impacting a new ES.
- Other PESs' contribution to ES building risk taken as a percentage of the allowable limits.

Example 1: New PES Impacting an Existing ES

Charge 1 Case

- Overpressure influence
- Building collapse influence
- Glazing debris influence
- PES debris influence
- Uncertainty influence

Charge 2 Case

- Overpressure influence
- Building collapse influence
- Glazing debris influence
- PES debris influence
- Uncertainty influence

Example 2: Existing PES Impacting a New ES

Charge 1 Case

- Overpressure influence
- Building collapse influence
- Glazing debris influence
- PES debris influence
- Uncertainty influence

Charge 2 Case

- Overpressure influence
- Building collapse influence
- Glazing debris influence
- PES debris influence
- Uncertainty influence

Takeaways

- Consider using a lightweight PES to limit the projection of heavy (hazardous) debris.
- Be strategic when designing new ESs:
 - Use construction types that limit extent of building damage/collapse due to acting blast loads.
 - Limit the amount of ES glazing in the direction of any PESs.
- Limit personnel exposure, particularly to meet group response criteria.
- Know your explosives and operations.
 - And thereby reduce likelihood of event occurrence and allowances for uncertainties.

