Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

TAREK H. KEWAISY PhD, PE, PMP, BSCP <u>Principal Associate</u> <u>tkewaisy@louisberger.com</u>

AYMAN ELFOULY PE Senior Structural Engineer elfouly@appliedscienceint.com

AHMED A. KHALIL PhD, PE Senior Structural Consultant khalilaa@appliedscienceint.com

NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

2018 IESSE- Structural Effects II- Methods and Applications (20699)

Presentation Outline

Introduction

Study Parameters

Simulation Approaches and Models

2

Predicted Blast Responses

Concluding Remarks

Future Research Work

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

NDIN

1-Introduction

Louis Berger

AS

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

3

NDIN

2018 International Explosives Safety Symposium & Exposition August 6 – 10, 2018 | San Diego, CA

EXPLOSIVES 1.1D

-#4 @ 12" ON CENTER EACH FACE

1.1 Background

- In DOD 6055.9-STD, a dividing wall is defined as a "wall designed to prevent, control, or delay propagation of an explosion between quantities of explosives on opposite sides of the wall."
- DOD 6055.09M references UFC 3-340-02 for the design of "dividing walls or barriers" to prevent propagation of explosions using separation by barriers.
- DDESB-KT Memorandum (2003) provided an Updated Guidance for Substantial Dividing Walls (SDW) including limits of application, specifics of RC wall construction and maximum NEWs for various sensitivity groups.

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

" CLEAR COVER

15' or 20'

1.2 Previous Research Work

- In 1994, Zehrt and Acosta utilized DYNA3D Hydrocode modeling to simulate Substantial Dividing Wall (SDW) response to close-range blast effects.
- Despite the limitations of the adopted FEM approach they concluded that the predicted fragment velocities and extents of wall damage agree closely with the actual test data.

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

1.2 Previous Research Work

- In 1998, Bogozian and Zehrt utilized DYNA3D Hydrocode modeling to simulate Substantial Dividing Wall (SDW) response to close-range blast effects.
- Their work highlighted the importance of adequately considering the gas phase of partially confined detonations on the integrity of SDWs.
- Their FEM models over-predicted wall responses by an order of magnitude due to uncertainties of blast loading and FEM modeling.

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

1.3 Current Research- Objectives

- Investigate the adequacy of a design-oriented analytical approach that can be used to design new and/or evaluate Reinforced Concrete (RC) walls used to prevent propagation of detonation in explosive facilities.
- Illustrate the applicability of the approach to compute the blast rating of sample RC walls of specific dimensions, material properties, and boundary conditions.

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

NDIN

1.3 Current Research- Methodology

- The current study adopted a robust numerical technique, Applied Element Method (AEM), to simulate the dynamic responses and damage mechanisms of Reinforced Concrete (RC) walls exposed to close-range blast effects.
- All study analytical models were developed and executed using Extreme Loading for Structure (ELS) software by Applied Science International (ASI) which incorporates the AEM technique.

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

1.3 Current Research- Methodology

- A Validation case was developed using information obtained from a published research paper by Zehrt and Acosta to verify the adequacy of the ELS software to simulate RC wall response (i.e. damage and fragmentation) when subjected to close-range blast environment.
- Once validated, ELS models were developed to investigate three other cases involving RC walls with varying thicknesses and exposed to blast from varying charge weights.

NDIN

2- Study Parameters

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

10

NDIN

2.1 Investigated Cases

Validation Case

AS

RC Substantial Dividing Wall 12 ft x 12 ft x 12 in #4 @ 12 in Each way, Each Face Horiz Rebar on the Outside 3/4 in Clear Cover to the Horiz Rebar 2 Adjacent Sides Fixed 3000 psi Concrete 40000 psi Rebar 272 lbs @ 2.5 ft from Wall and Floor

Case-1

RC Substantial Dividing Wall 12 ft x 12 ft x 12 in #4 @ 12 in Each way, Each Face Horiz Rebar on the Outside 3/4 in Clear Cover to the Horiz Rebar 2 Adjacent Sides Fixed 4000 psi Concrete 60000 psi Rebar 615 lbs @ 3.0 ft from Wall and Floor

11

Case-2

RC Substantial Dividing Wall 12 ft x 12 ft x 10 in #4 @ 12 in Each way, Each Face Horiz Rebar on the Outside 3/4 in Clear Cover to the Horiz Rebar 2 Adjacent Sides Fixed 4000 psi Concrete 60000 psi Rebar 420 lbs @ 3.0 ft from Wall and Floor

Case-3

RC Substantial Dividing Wall 12 ft x 12 ft x 8 in #4 @ 12 in Each way, Each Face Horiz Rebar on the Outside 3/4 in Clear Cover to the Horiz Rebar 2 Adjacent Sides Fixed 4000 psi Concrete 60000 psi Rebar 270 lbs @ 3.0 ft from Wall and Floor

NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

Louis Berger Simulation-Based

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

9/20/2018

2.2 Wall Configuration- Discretization

AS

2.2 Wall Configuration- Reinforcement

Front Face Rebar (#4 @ 12" EW)

Back Face Rebar (#4 @ 12" EW)

NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

2.3 Material Properties- Validation Case

Simulation-Based Design Of Reinforced Concrete Walls To

Prevent Sympathetic Detonation In Explosive Facilities

Stress-Strain Curve (Concrete)

Stress-Strain Curve (Reinf. Steel)

NDIN

2018 International Explosives Safety Symposium & Exposition

Louis Berger

AS

2.4 Material Properties- Other Cases

A615-Gr60 Strerss Strain Curve

1.200E+05

Stress-Strain Curve (Concrete)

Simulation-Based Design Of Reinforced Concrete Walls To

Prevent Sympathetic Detonation In Explosive Facilities

Stress-Strain Curve (Reinf. Steel)

Engineering

NDIN

2018 International Explosives Safety Symposium & Exposition

TRUE

Louis Berger

AS

- ConBlast (Confined Blast) is used to Model and Compute Confined/ Partially Confined Blast Environment using SHOCK & FRANG Programs.
- For each investigated case, the Blast
 Pressure Time Histories (including
 Shock & Gas Phases) were computed
 at various target locations on surface of
 the RC Wall.

9/20/2018

EXPLOSIVES

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

NDI

Idealized Blast Load Curve

Idealized Loading Regions

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

NDIN

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 – 10, 2018 | San Diego, CA

EXPLOSIVES 1.1P

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 – 10, 2018 | San Diego, CA

EXP

2.6 Performance Criteria

HP Magazine Sensitivity Groups		Unit Impulse and Energy Loads		
Group No.	Group Description	Impulse, I _{thres} (psi-sec)	Energy, KE _{thres} (ft-k/in ²)	
1	Robust	45	24.5	
2	Non-Robust	67	24.5	
3	Fragmenting	53	8.49	
4	Cluster Bombs/ Dispenser Munitions	25.6	3.77	
5	SD Sensitive	5.23	0.3	

3.77 0.3 **for**

Sympathetic Detonation (SD) Threshold Criteria for A/E of Various Sensitivity Groups

Ref: "High Performance Magazine Non-Propagation Wall Design Criteria", Technical Report TR-2112-SHR, Hager, Tancreto, Swisdak, Naval Facilities Engineering Service Center, June 2002

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

Used in

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

3.1 UFC 3-340-02 Section 4-55

- Empirical Design Based on Testing Data
- Allows the Estimation of RC wall Thickness Based on Acceptable Concrete Damage.
- Concrete Damage Varies from "Minor Spall" to "Breach" and is Expressed in Terms of Spall Parameter Ψ.
- Spall Parameter Ψ depends on many factors including: Charge Weight & Shape, Standoff, Concrete Strength, and Wall Thickness.
- Acceptable Damage and Required Thickness
 Depend on Explosive's Sensitivity Group (SG)

Louis Berger

AS

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 – 10, 2018 | San Diego, CA

NDIN

3.1 UFC 3-340-02 Section 4-55

Material	DDESB KT- Memorandum (SG1 to SG4)	Case-1 (12-in) Wall (SG1 to SG4)	Case-2 (10-in) Wall (SG1 to SG4)	Case-3 (8-in) Wall (SG1 to SG4)
Charge Weight (TNT Equiv.) (W) (Ibs)	425	615	420	270
Charge Size (L x D) (ft x ft)	0.833 x 1.040	0.833 x 1.200	0.833 x 1.040	0.833 x 0.900
Range (R) (ft)	3'-0"	3'-0"	3'-0"	3'-0"
Concrete Compressive Strength (psi)	2500	4000	4000	4000
Wall Thickness (h) <i>(in)</i>	12	12	10	8
Spall Parameter Ψ	0.355	0.361	0.404	0.464
Spall Threshold (h/R) _{Spall}	2.617	2.567	2.208	1.801
Breach Threshold (h/R) _{Breach}	1.053	1.030	0.872	0.710
Design Thickness: Range Ratio (h/R)	0.284	0.278	0.237	0.193
Design/ Spall Ratio (h/R)/ (h/R) _{Spall}	10.9 %	10.8 %	10.7 %	10.7 %
Design/ Breach Ratio (h/R)/ (h/R) _{Breach}	27.0 %	27.0 %	27.1 %	27.2 %
Expected Damage Level	Breach	Breach	Breach	Breach
Borgor				

Louis Berger

AS

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 – 10, 2018 | San Diego, CA EXPLOSIVES

3.1 UFC 3-340-02 Section 4-55

Material	DDESB KT- Memorandum (SG5)	Case-1 (12-in) Wall <mark>(SG5)</mark>	Case-2 (10-in) Wall <mark>(SG5)</mark>	Case-3 (8-in) Wall <mark>(SG5)</mark>
Charge Weight (TNT Equiv.) (W) (Ibs)	20	28	21	15
Charge Size (L x D) (ft x ft)	0.833 x 0.376	0.833 x 0.423	0.833 x 0.382	0.833 x 0.340
Range (R) (ft)	3'-0"	3'-0"	3'-0"	3'-0"
Concrete Compressive Strength (psi)	2500	4000	4000	4000
Wall Thickness (h) <i>(in)</i>	12	12	10	8
Spall Parameter Ψ	0.789	0.794	0.879	0.995
Spall Threshold (h/R) _{Spall}	0.678	0.669	0.532	0.395
Breach Threshold (h/R) _{Breach}	0.306	0.303	0.256	0.208
Design Thickness: Range Ratio (h/R)	0.314	0.311	0.261	0.210
Design/ Spall Ratio (h/R)/ (h/R) _{Spall}	46.3 %	46.6 %	49.1 %	53.2 %
Design/ Breach Ratio (h/R)/ (h/R) _{Breach}	102.4 %	102.7 %	101.9 %	101.3 %
Expected Damage Level	Major Spall	Major Spall	Major Spall	Major Spall
Berger Simulation-Based Desir	on Of Reinforced Concrete	Walls To	2018 International Explos	

AS

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

3.2 Applied Element Method (AEM) in Extreme Loading for Structures (ELS)

The continuum is discretized into **Elements** connected together with **Nonlinear Springs**. The springs represent **Material** behavior, Axial and Shear **Deformations**.

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

DIN

3.2 Applied Element Method (AEM) in Extreme Loading for Structures (ELS)

Extreme Loading Software (ELS) - reinforcing bars springs

3.2 Applied Element Method (AEM) vs Finite Element Method (FEM)

2018 International Explosives Safety Symposium & Exposition August 6 – 10, 2018 | San Diego, CA

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

AS

3.2 Applied Element Method (AEM: Constitutive Material Models)

AEM - Nonlinear Material Models

9/20/2018

3.2 Applied Element Method (AEM: Constitutive Material Models)

AEM - Nonlinear Material Models

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

NDIN

3.3 AEM/ ELS Model- Meshing

31

NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

9/20/2018

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

4- Predicted Blast Responses

32

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities Safety Symposium & Exposition August 6 – 10, 2018 | San Diego, CA

Satety Symposium & Exposition August 6 – 10, 2018 | San Diego, CA

19

9/20/2018

34

9/20/2018

4.1 Validation Case (12-in RC Wall / 272# @ 2'-6")

Louis Berger

AS

Wall Fragmentation Progression over Time

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

NDIN

9/20/2018

4.1 Validation Case (12-in RC Wall / 272# @ 2'-6")

(FEM by W. Zehrt & P. Acosta)

NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

9/20/2018

Simulation-Based Design Of Reinforced Concrete Walls To Prevent

Sympathetic Detonation In Explosive Facilities

Louis Berger

AS

38

NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

4.2 Case-1 (12-in RC Wall / 615# @ 3'-0")

Wall Structural Response History

40

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

CAPLOSIV

Vall / 615# @ 3'-0")

4.2 Case-1 (12-in RC Wall / 615# @ 3'-0")

600.0

545,8

491.7

437,5

383.3

329.2

275.0

220.8

166.7

112.5

58.3

4.2

-50.0

 $\overline{}$

Velocity

 \geq

41

AS

Wall

Fragment

Velocity

Profile

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA 9/20/2018

4.2 Case-1 (12-in RC Wall / 615# @ 3'-0")

Louis Berger

AS

Wall Fragmentation Progression over Time

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

4.2 Case-1 (12-in RC Wall / 615# @ 3'-0")

Fragment Velocity Time Histories at Various Positions

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

NDIN

44

4.3 Case-2 (10-in RC Wall / 420# @ 3'-0")

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA **CXPLOSIVES**

4.3 Case-2 (10-in RC Wall / 420# @ 3'-0")

AS

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities Safety Symposium & Exposition August 6 – 10, 2018 | San Diego, CA

19

4.3 Case-2 (10-in RC Wall / 420# @ 3'-0")

Wall Fragmentation Progression over Time

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

Louis Berger

AS[®]

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

NDIN

EXPLOSIVES 1.10

4.3 Case-2 (10-in RC Wall / 420# @ 3'-0")

47

Fragment Velocity Time Histories at Various Positions

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA EXPL

4.4 Case-3 (8-in RC Wall / 270# @ 3'-0") AS

Wall **Structural** Response **History**

August 6 - 10, 2018 | San Diego, C

9/20/2018

48

~ 11

4.4 Case-3 (8-in RC Wall / 270# @ 3'-0")

Sympathetic Detonation In Explosive Facilities

4.4 Case-3 (8-in RC Wall / 270# @ 3'-0")

Louis Berger

Wall Fragmentation Progression over Time

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities 2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

NDIN

4.4 Case-3 (8-in RC Wall / 270# @ 3'-0")

51

Fragment Velocity Time Histories at Various Positions

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA EXPL

5- Concluding Remarks

Louis Berger

AS

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

52

NDIN

2018 International Explosives Safety Symposium & Exposition August 6 - 10, 2018 | San Diego, CA

EXPLOSIVES 1.1D

Concluding Remarks

The Simulation-Based approach can be used to optimize the design of RC walls to prevent sympathetic detonation in explosive facilities. This approach allows protective design engineers to achieve the targeted levels of protection based on a physicsbased rationale which promotes construction economy. The Simulation-Based approach can be improved through calibration using available testing measurements and observations. This can lead to great savings by eliminating the need to perform time-consuming and costly blast testing.

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

DIN

The AEM technique implemented in ELS software can be used successfully to simulate highly plastic RC response to closerange blast environment. The Software proved its capabilities to adequately predict high levels of structural damage including fragmentation and breaching.

ASI

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

The current study utilized the Simulation-Based approach to compute the SD blast-rating of RC walls and based on the simulation results using a maximum fragment velocity (V_{max}= 650 ft/sec: based on Impact threshold criterion for SG4), it was found that the investigated (12 x 12 ft) RC walls have SD blast ratings of: 615, 420, 270 Lbs of TNT for 12-, 10-, and 8-in Walls.

AS

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

NDIN

6- Future Research Work

AS

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

56

NDIN

Perform **Parametric Studies** to investigate the influence of various design parameters on the blast rating and damage potential of RC walls used to prevent blast propagation including:

1- Blast Environment (charge weight, shape, dimension, casing, range, cubicle size, venting area, blast computation software/ models)

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

NDIN

Future Research Work

2- Structural Design Configurations (Material strength, reinforcement details, cubicle/ Wall geometry, varying wall thickness over height, boundary conditions)
3- Numerical Simulation Technique (Constitutive material models, discretization, strain rate effects, end restraints,

concrete-rebar interface)

4- Performance Criteria (fragment impact thresholds for various explosive sensitivity groups)

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities

NDIN

Louis Berger

Simulation-Based Design Of Reinforced Concrete Walls To Prevent Sympathetic Detonation In Explosive Facilities NDIN

