

Design Roadmap for Explosives Safety Protective Construction

2018 International Explosives Safety Symposium & Exposition

Arturo Luna, PE

NAVFAC EXWC

CI7, Explosion Effects and Consequences

- Role of Protective Construction (PC) within explosives safety
- Understanding QD violations as a design basis for PC
- Some key considerations for PC designers
 - -Design loads/load prediction tools
 - -Dynamic structural analysis
 - -Reinforced concrete/steel design

PC validation

- Applicable explosives safety standards for storage and operations defined in:
 - DoD Manual 6055.09-M, "DoD Ammunition and Explosives Safety Standards"
- Explosives safety quantity-distance (ESQD)
 - -Or QD, defines the required standoff distance necessary to achieve an acceptable level of protection for a given facility/location from a given quantity of ammunition and explosives (A/E)
- When QD distances aren't satisfied, protective construction (PC) may be used to provide equivalent protection

- To design PC, it is important to understand what aspects of QD were violated
- Four predominant exposures within QD
 - -Inhabited Building Distance (IBD)
 - -Public Traffic Route Distance (PTRD)
 - -Intraline Distance (ILD)
 - -Intermagazine Distance (IMD)

• Six Hazard Class/Division (HD) defined for DoD A/E

- -Predominant explosion effects of three most prevalent:
 - HD 1.1: Mass exploding, blast and fragment hazard
 - HD 1.2: Non-mass exploding, fragment and blast hazard
 - •HD 1.3: Mass fire (blast and fragmentation negligible)

-PC design criteria is written considering effects of HD 1.1 since it is generally the most hazardous

- For IBD (personnel protection), acceptable hazard levels are as follows:
 - –Overpressure: Peak pressure limited to 1.2 psi for < 100K lbs (0.9 psi for >250K lbs)
 - –Debris/Fragments: Less than one hazardous fragment (KE > 58 ftlbs) per 600 ft² (Equates to approximately a 1% chance of getting hit with a piece of debris that would likely cause injury or fatality)
 - -Thermal: Prevent onset of 2nd degree burns
- QD distances are based on the AE's effects requiring the largest distance

Explosion Effects on Protective Construction (VIDEO)

- For explosives safety, protective construction requirements are defined in UFC 3-340-02, "Structures to Resist the Effects of Accidental Explosions"
- Protective construction is defined as falling into one of three categories:
 - -Existing, approved protective construction design
 - Earth-covered magazine (ECM), e.g., Box Type C or Navy MSM
 - Missile Test Cell

-Modification of a previously approved protective construction design

- Modification of an approved ECM potentially effecting its blast response (e.g., crane installation supported by roof, widening of ECM, etc.)
- Modifications do not apply to below grade site adaptations

-New Protective Construction Design

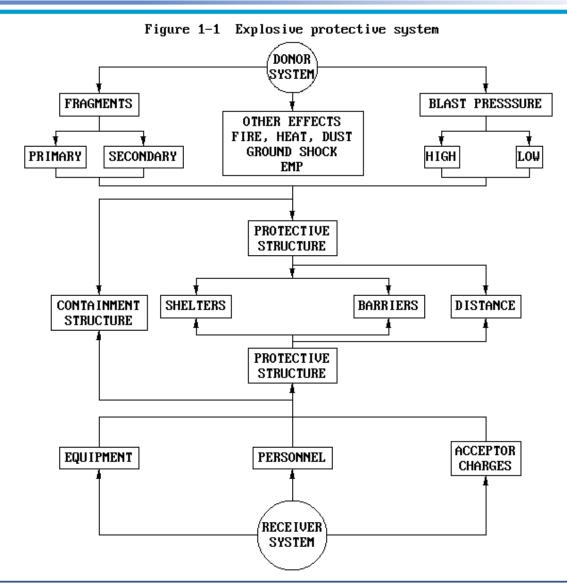
• Can apply to construction of a brand new facility or repurposing of an existing facility for explosives safety operations

PC structure types

-Shelters: protect acceptor system (assets and people)

- Generally far from donor system, so thermal effects don't control
- External building envelope (exterior walls, doors/windows, roof) must resist blast effects
- -Barriers

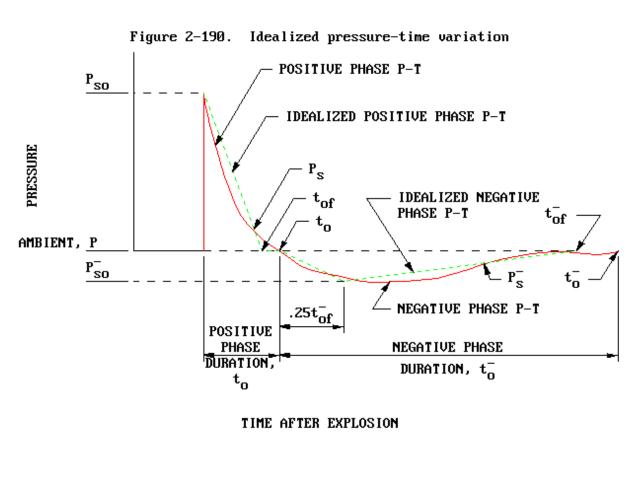
-Containment structures: limit/prevent release of hazards of donor system


- Close-in (Z = R/W^{1/3} < 3 ft/lb^{1/3}) blast effects (breach/spall)
- UFC 3-340-02 recommends weight to volume W/V < 0.15 lb/ft³

-4 Protection Categories

- Protection Category 1 must be selected for personnel protection
- Other categories protect assets/prevent propagation of explosion
- Allowable response/deflection varies by category

Protective Construction – Explosive Protection System

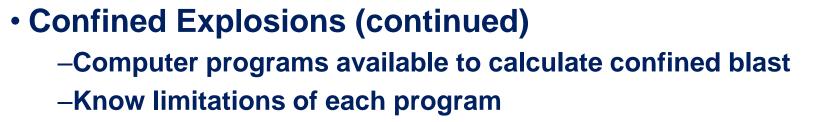

NAVFAC EXWC: Technology Driven, Warfighter Focused

- Design load basis
 - -MCE = 1.2 (sited net explosives weight)
 - -Can include pressure, frags, & debris
- Unconfined explosions
 - -Create external loads on shelters
 - -Can occur in the air or on the ground
 - -Unconfined hemispherical surface burst is conservative in terms of wave reflection/amplification
 - -Design charts/equations to calculate p(t) on all structure faces
 - -Openings into structure (penetrations/vents) can allow pressure to buildup inside structure

- External blast pressure – negative phase
 - –Low pressure, potentially high impulse
 - -Usually does not affect design
 - -Exceptions: non-rigid construction, rebound sensitive, high NEW's (high impulse)

Confined Explosions

-Result from internal detonations


-Result in shock and gas pressure

- Shock pressures are short duration (few ms)
- Gas pressures long duration (order of magnitude longer)

-Gas pressures

- Must be vented
- Impact on structure reduced by venting and frangible panels
- Frangible panels
 - Glass, metal panel roof, etc.
 - Resistance < 25 psf
 - Lighter frangible panels allow more venting

-Design charts/equations to calculate p(t) inside cubicles

BlastX General Input		? ×		
Units:	Global Calculation			Run
C SI	Gas and Shock	<	ĺ	ОК
U.S.	🔿 Gas only			Cancel
Plot Options:	Shock only			Cancer
Pressure	🔘 Gas, Shock, & /		Open Input	
Temperature		Save Input		
Time at whic		Save Input As		
Default globa Maximum r		Help		
Title: Example BLAS	oom: 30 -	1		
Default output path:	Brows	se		
Ambient Conditions —	tion —			
Pressure: 14.6	69595 psi	Rooms: 1		Room Input
Temperature: 59.	deg. F	Openings: 0		Openings
Oxygen fraction: 0.20	095	Targets: 1		Target Sites
Defa	ults	Charges: 1		Charges

🙆 Confined Blast - C:\Users\arturo.luna1\Documents\Test\samp — 🛛 🛛 🗙								
File Help								
Analysis: SHOCK/FRA	NG - Internal Shock and Gas Pressure - Execute							
Computation Engines	Room Dimensions							
Inputs	Width: 0.00 🖨 ft.							
Run Title and Units	Length: 0.00 🗭 ft.							
Room Data Charge Data Reduced Area / Pane Surfaces to be Analyz	Height: 0.00 📮 ft.							
	Initial open vent area: 0.00 🖨 sf							
Outputs # Text Results	Print Flag: Print every 100th line.	Print every 100th line.						
naphical Results	Time Step: 0.01 🖨 msec.							
	Reflecting Surfaces							
	Front Rear							
	✓ Left ✓ Right							
	Ceiling Floor							
< >>								

NAVFAC EXWC: Technology Driven, Warfighter Focused

Confined Explosions (continued)

-BlastX limitations/considerations

- 'Maxord' number of shockwave reflections, user defined
- Shock diffraction between rooms
 - Explosion should occur > D = $sqrt(A_{opening})$ from opening, valid for incident pressure at opening < 900 psi
- Shockwave diffraction around corner intended for non-line-of-sight

-ConBlast limitations/considerations

- Shock model 0.2 < Z < 100 ft/lb^{1/3} for any surface
- FRANG gas pressure model requires non-zero vent area
- TP-13 debris throw calculations valid for NEW < 250 lbs

- Blast resistant construction must typically respond inelastically to be economical – dynamic analysis required
- Mass more effective than damping at reducing response
- Dynamic analysis via response charts
- SBEDS 'General SDOF' can do numerical integration
- SBEDS component resistance functions not suitable

·		OPEN	5 v5.1: Gene		anont Analu	-
		Dynamic Reaction F			onent Analy	
Click to Input Blast Parameters	Click to Input Blast		Elastic	Plastic		Please fill in yellow input cells and any required yield deflections indicated in cell M45. Note that all rebound resistances and
Blast Load Type		F (Support 1) =	Liapao	Trastas		deflections should be negative. All load-mass factors should be
Manual input		R (Support 1) =				positive. The ERROR MESSAGES provides some guidance on
Gravity Displacement		F (Support 2) =				input if errors are detected, as well as HELP button. Incorrect or unexpected input can cause large errors.
None (vertical component)		R (Support 2) =				unsexpected input can cause mage errors.
Pressure-Time Input			-		L	
Time (ms) Pressure (psi)						
0 16.647	+					
9.33 0	-	80	lution Control			
9.33	-	Inbound Natural Period:		36.31	-	Resistance vs Deflection
9.33	-	Reloand Natural Period:		36.31		
9.33	-	Max Recommended Time Step		0.10		18
9.33	-	Time Stee:		0.01		
9.33	-	% of Critical Damping:			%	16
9.33	-	Initial Velocity:			in/ms	14
Charge Weight (W) and Standoff (R)		Initial Displacement:			in	
W (lb) Explosive Type			OF Properties*			
N/A N/A	+	Property	Inkound	Relocund **	Units	
W(TNT Equiv)(lb) R (ft)		Mass. M	2698.0	2.698	psi-ms2/in	
N/A N/A	+	Load-Mass Factors, K	2000.0	2,000	por modelin	
Blast Load Phase		Kun	0.75	0.75		§ 8 -
N/A		K _{LM2}	0.76	0.76		· · · · · · · · · · · · · · · · · · ·
Blast Load Orientation		Kun	0.57	0.57		2 0
N/A		K _{LM}	0.57	0.57		
Parameters for Reflected Loads		Kus	0.57	0.57		4
Wall Height (ft)1 N/A		Stillness, K	0.07	Rebound flag*		2
Wall Width (ft) ¹ N/A		Ka	60.76	60.76	psi/in	2
Incidence Angle ² N/A		Ka	55.98	55.98	psilin	
See notes under Input Design Orteria	1	Ka	0.00	0.00	psi/in	0 0.1 0.2 0.3 0.4 0.5 0.6
Lond Files-AXIAL(above),BLAST(below)	-	K	0.00	0.00	psvin psi/in	Deflection (inch)
AsialLoad input File Not Selected		Ka	0.00	0.00	psvin psi/in	
N/2	-	Resistance, R	0.00	0.00	povin	-
144	4	Reproduce, R	5.74	-5.74	psi	
		R	15.79	-15.79	psi	
Response Orlieria		R	15.79	-15.79	psi	
θ (deg) μ	-	R	15.79	-15.79	psi	
0 (ME3) h	+	14	10.75	-10.75	por	
	1	Yield Displacement, x	No least Door	ired for xi Valu	or Delew	
		rid uspacananç x	No inpor receip	Fearlor Al Vala	in in	Notes;
		*2			in	¹ Used for clearing of reflected load
		13			in	² Angle in degrees from normal
		x3 x4	1		in	³ Entering data in white cells will OVERWRITE formulas and cause ERRONEOUS results!!
See All COE		A7	1		"	To recover formulas, save your input data and reinitiate Component Type on Intro worksheet.
Response Criteria		Equiv Elastic Displacement, X ,	0.10	-0.10	in	⁴ Dynamic axial load per unit width from saved Dynamic Shear History file for supported component.
for AT/FP		Shortest Yield Line Distance to Determine		72.0		If axially loaded width # blast loaded width, modify saved Dynamic Shear file per User's Guide
		Equivalent P-delta Axial Load Factor, W _r		720	1/m*2	(see General SDOF component)
			⁴ Static Axial Load: ⁴		livin 2	⁵ Input total static axial load on component divided by width of blast loaded area.
		Leave Blank for No Axial Load	state Para 2000.		in	
		Strain at First Yield for Strain-Rate			in/in	
		Truicely Rebound Flag = 1.See Help document for compression membrane.br		embrane brille re-		
Error/Warning Messages		* User can overwrite yellow above cells in Rebound column				
and an and an and a start of the start of th						
		Rosults Su	mmary			
	8 = 0.17 den					
	0 _{max} -		No re	sponse oriteria	specified	
	X _{max} Inicound =		at time =	12.34	msec	1
	X _{nin} Rebound =		at time =	30.67	msec	
	R _{max} =		at time =	12.34	msec	
	R _{nin} =		at time =	30.67	msec	
	- the second		at une =	30.01		

NAVFAC EXWC: Technology Driven, Warfighter Focused

UFC 3-340-02

5 December 2008

Change 2, 1 September 2014

Reinforced concrete partial/containment cells

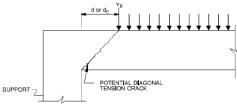
-Flexure: don't overdesign!

-Diagonal tension reinforcement

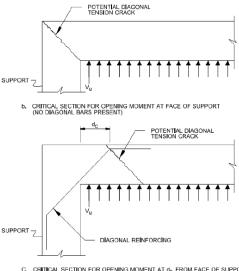
- Required for close-in range
- Design stress reduced if wall/slab is in tension
- Critical section

-Direct shear

• Concrete has zero capacity under tension (diagonal bars required)


-Direct tension reinforcement required

Located mid-depth

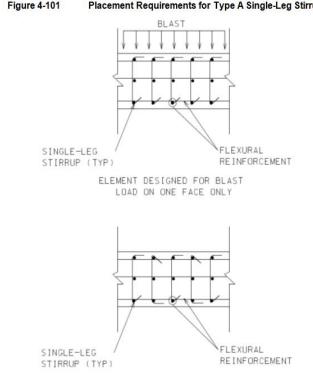

-Spall and breach

Minimum thickness

a. CRITICAL SECTION FOR CLOSING MOMENT AT d or dC FROM FACE OF SUPPOR

C. CRITICAL SECTION FOR OPENING MOMENT AT $d_{\rm C}$ FROM FACE OF SUPPORT (DIAGONAL BARS PRESENT AND DESIGNED PER SECTION 4-19)

Reinforced concrete detailing


-Minimum diagonal tension reinforcement not applicable for Type 1 walls in far design range Figure 4-101 Placement Requirements for Type A Single-Leg Stirrups

-Stirrup types/orientation

- Depend on response
- Type A (90°-135°), up to 2°, Z > 1 ft/lb^{1/3}
- Type B (135°-135°), up to 12°, Z > 1 ft/lb^{1/3}
- Type C (180°-180°), up to 12°

-Splices

- Lapped, low stress, stagger
- Mechanical splices must be tested
- Welded generally not permitted

ELEMENT DESIGNED FOR BLAST LOAD ON EITHER FACE

Steel design considerations

-Close-in design

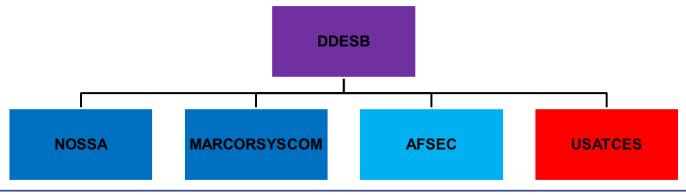
- Concrete generally performs better
- If steel is used, avoid brittle modes of failure (weld/connection fracture, fragment penetration by keeping charge low)

-Rebound response

• Can be significant, up to 100% of inbound, in steel due to lack of damping

-Stress interactions

- More critical for steel
- Ex., designer must check combined tension and shear at the connections of containment structures


-Fragments may control over flexure (i.e., plate thicknesss)

-Dynamic connection design

- Dynamic capacity of connections can be used
- Account for dynamic strength by dividing load by 1.7(DIF) then use AISC allowable static strength capacity tables

- DDESB Memo 21 October 2008/TP-26 define minimum requirements to validate protective construction
- Requires review by a competent DoD blast agency
 - -Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC)
 - -US Army Engineering and Support Center, Huntsville (USAESCH)
- DoD blast agency is not approval authority
- Stakeholder coordination is key communicate early and often, especially at concept stage

NAVFAC EXWC: Technology Driven, Warfighter Focused

- Understand QD violations to form PC basis of design
- Design procedures vary for shelters vs containment structures
- Maintain awareness of limitations on software engineering tools
- Detailing and response of containment structures is more complex
- Concrete vs Steel design considerations
- Identify and talk to your DoD approval authority & blast design review agency