
## Decontamination and Dismantling (D&D) of Explosive Contaminated Process Piping in High Explosive Load Lines

Paul L. Miller Gradient Technology Elk River, MN USA

# Problem

- Gradient Technology has had to D&D three facilities containing hazardous material piping
  - Piping contaminated with hazardous materials is common throughout facilities
    - Explosive contaminated process piping, vacuum lines, drain lines, steam lines, etc.
    - Flammable solids, liquids, and gases in piping
    - Compressed liquids and gases
  - Identification of the extent of contamination may be difficult in older buildings

## Quick! Which Pipes Are Contaminated?



#### Issues

- Contamination can be on the interior, exterior, or both
  - Example: Huddersfield (UK) fire from external explosive contamination on steam line
- Information on pipe contamination may be limited (or even wrong) due to age or lack of adequate recordkeeping
  - Especially true in research and development (R&D) areas

# **Project Goals**

- The three projects all had common goals
  - 1. Minimize overall risk to the maximum extent possible
  - 2. Minimize the number and exposure of personnel on the project to the maximum extent possible
  - 3. No significant damage to the facility
    - Intended for refurbishment and reuse
  - 4. Minimize cost and schedule
  - 5. Minimize environmental release

# **In-Situ Decontamination**

- Hot gas decontamination in-situ
  - Excellent high tech method best left to experts
- Thermal decontamination by total building incineration ("burn down") is commonly employed, very safe, and very effective
  - Excellent low tech method IF:
    - You don't intend to reuse the building
    - You're not going to affect other process lines, etc.
    - Environmental concerns can be adequately addressed

## But, .... what if you want to SAVE the BUILDING?

- There are two major approaches to piping systems cleanup without damaging the building
  - 1. Decontaminate then dismantle or reuse
    - Standard practice among chemical processing plants with liquid hazardous materials
    - More easily said than done with explosive contamination
      - Contamination can be insidious
      - Chemical / Mechanical decontamination has high risk during both decontamination and later dismantling

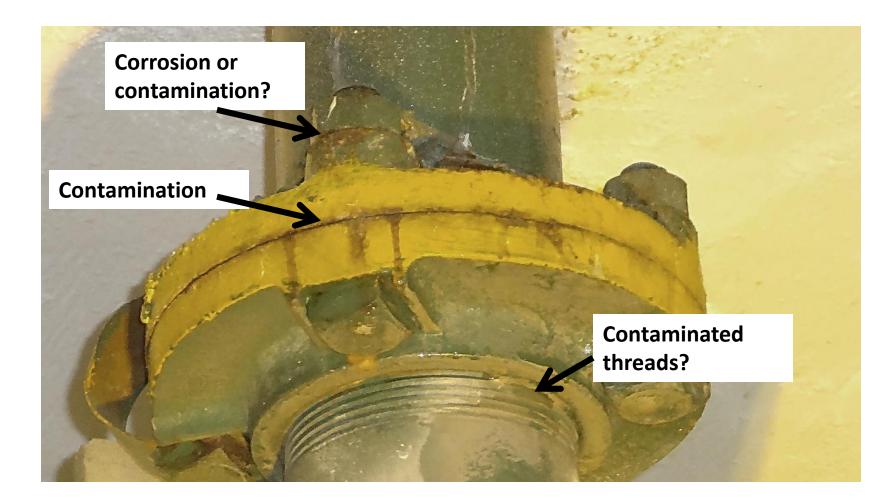
## Sage Advice About Explosives Decontamination

"No amount of flushing can positively remove explosives from pipes such that the pipes no longer present explosion hazards"

– Doyle, C. (1998). Buildings and Equipment Contaminated with Explosives, 28th DDESB Seminar. ADA513625

# Second Major Approach

- 2. Dismantle then decontaminate
  - Somewhat scary to contemplate and the process has risks, but is achievable with a trained crew
    - Hazards Analysis must ALWAYS be performed to thoroughly understand the issues and risks associated with the process
    - Full procedures must be developed
  - Standard procedure in some locations:


"Vacuum lines should be presumed contaminated and removed for thermal treatment"

Anderson and Ricks "Naval Surface Warfare Center - Indian Head Division's Explosive Decontamination Experience," 29<sup>th</sup> DDESB Seminar (2000)

## **General Techniques for Line Breaking**

- It is "possible" to disassemble piping in the same manner as it was assembled
- HOWEVER **Resist the urge** unless you're sure
  - Understand the risks and if they are worth it
  - **NEVER** unscrew a contaminated threaded pipe
    - No known way to assure pipe threads are clean
  - Flanged pipes can have trapped spaces, contaminated (asbestos?) gaskets, and contaminated flange bolts
    - Flanges **MUST NOT** bang into or rub against each other

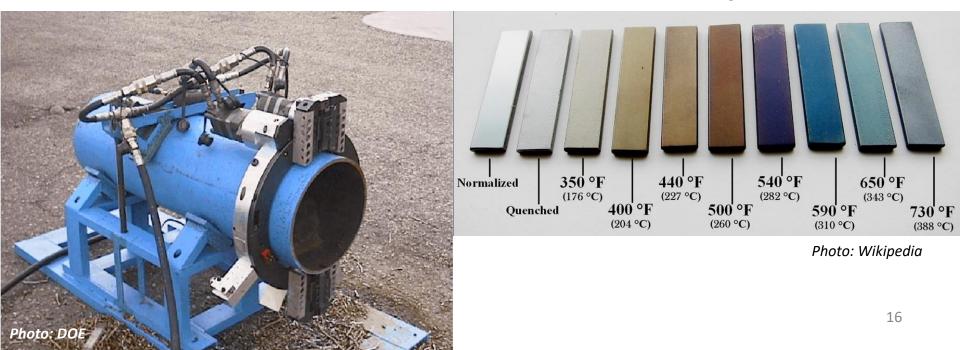
## **Flanged Pipe Joint**



# Line Breaking by Cutting

- Often the best approach is to just cut the pipe so it can be removed and decontaminated
  - The Department of Energy (DOE) has had to address this problem since the 1960s with nuclear reactor decommissioning
  - For references see:
    - Decommissioning Handbook, U.S. Department of Energy, DOE/EM-0142P (1994)
    - Decommissioning Handbook Procedures and Practices for Decommissioning, DOE/EM-0383
    - *Pipe Cutting and Isolation System*, DOE/EM-0448

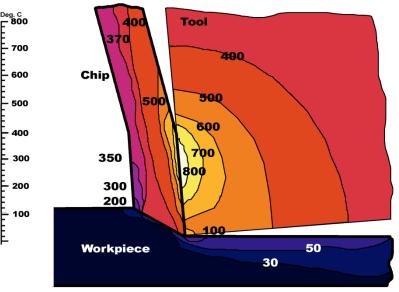
- DOE lists several methods
  - Thermal (e.g., torch, plasma arc, arc saw, etc.)
    - Not realistic for flammable or explosive contamination
  - Explosive cutting (e.g., linear shaped charge, etc.)
    - Before you laugh, see Doyle, C. (1998). "Buildings and Equipment Contaminated with Explosives," *28<sup>th</sup> DDESB Seminar*, ADA513625
  - Abrasive cutting (e.g., abrasive saw, angle grinder, diamond wire saw, etc.)
    - Concerns about heat, sparks, and wire snapping energy


#### **Abrasive Saw Operations**



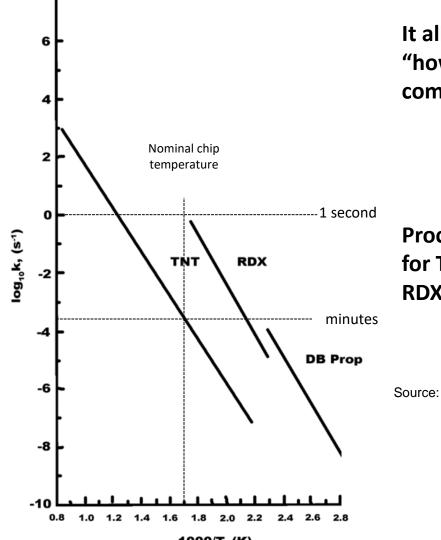
- Shear Cutting (e.g., hydraulic shears, "Jaws of Life" [Hurst tool])
  - Great for inert pipes up to DN 65 (2.5 NPS) and vehicle rescue
  - Some events have occurred on live munitions
- Displacement Cutters
  - (e.g., "traditional" pipe cutters)
    - Some concern about the point of breakthrough as thin metal gets hot




- Rotary pipe lathes
  - Used by DOE extensively; some concern about heat at breakthrough:
    - "Workers can watch the cut and when the metal turns blue it indicates that the metal is very thin and thermally hot. Breakthru is about to occur" – DOE Decommissioning HDBK (1994)



- Mechanical Cutting
  - Toothed cutters are by far the most common in industry; e.g., chop saws, hacksaws, and bandsaws
  - Can be effective with certain explosives if the heat can be controlled with coolant – do the hazards analysis!




Portable bandsaw cutting DN 25 (1-in NPS) stainless steel pipe



Adapted from: Shaw (2005)

#### **Temperature vs. Time**



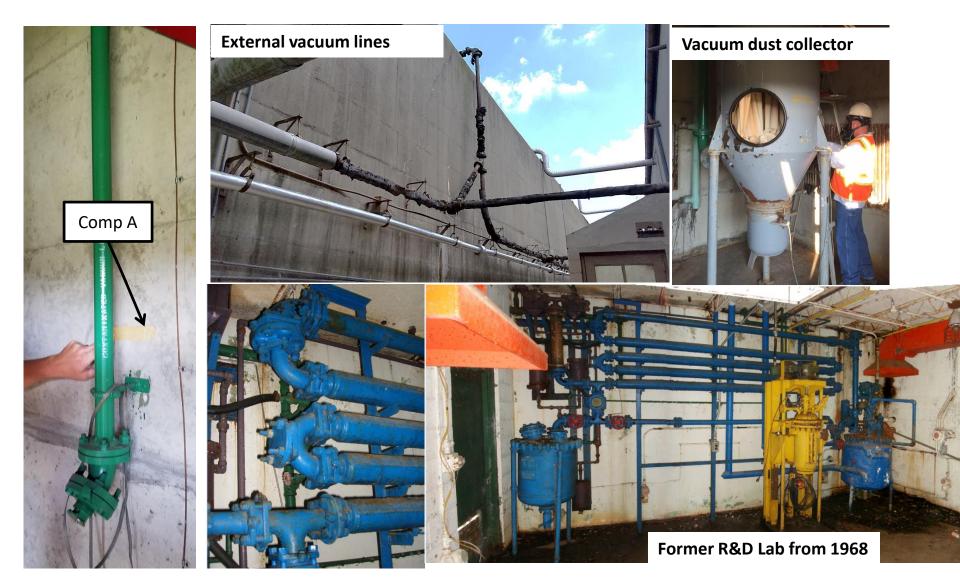
It all gets down to "how much risk are you comfortable with?"

#### Process might be safe for TNT, but not for RDX based materials

Source: Kondrikov, B. N. and E. I. Alyoshkina (2002). "Thermal Decomposition of Nitrocompounds in a Broad Range of Temperatures and Pressures," *Proceedings of the Twelfth International Detonation Symposium.* 

# **Abrasive Waterjets (AWJ)**

- Internal hazard analyses favored using AWJs for cutting the piping due to high risk cutting RDX
  - PROs
    - Well established technology (since 1980s)
    - Demonstrated high safety for use around flammable materials and secondary high explosives
      - Independently vetted by DOE for flammable environments
    - Remotely operated
    - Cuts through all metals without jamming
  - CONs
    - Messy, uses consumables
    - Jet follow through can cut up to a meter away
    - Loud
    - Requires training to use properly


#### **AWJ Parameters**

- Operated at 380 MPa (55ksi) using 3.8 l/min water and 1 kg/min of garnet abrasive
  - Garnet abrasive was used as it had no free silica and was not piezoelectric
  - Waste water, garnet, and swarf was captured using plastic sheeting and vacuumed up afterwards
  - Cutting standoff distance was up to 15 cm (6 in) allowing free clearance around obstructions
    - Sacrificial shielding was used to stop or deflect jet follow through

#### Jet Follow Through and Deflector



## **Pre-Op Inspection**



# **Remotely Operated**

- The system was remotely operated and monitored using fiberoptic cable
  - Minimizes operational risk
  - Max range ~2 km



## Some of the 500+ cuts



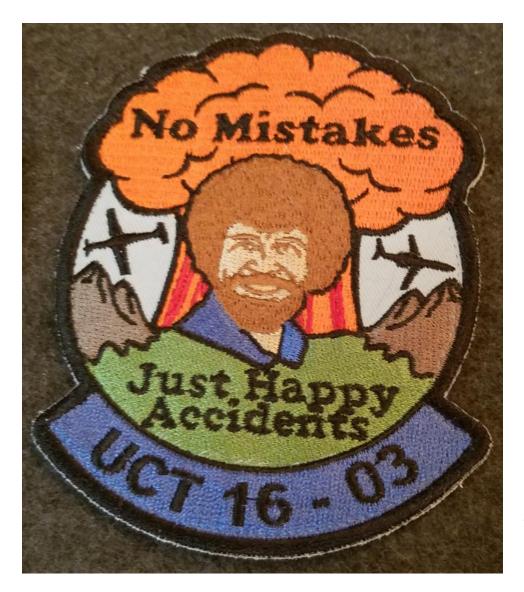
#### **Post-Cut Bone Piles**



#### Were We Too Cautious?






#### No, I think we correctly identified the risks







#### **Bob Ross Was Wrong!**



As seen in the *Chuck Wagon* restaurant outside of Redstone Arsenal