09 August 2018

U.S.ARMY

Effects of High Strain Rates on ASTM A992 and A572 Grade 50 Steel

UNCLASSIFIED

Matthew P. Murray, Trace A. Thornton, and Stephen P. Rowell

U.S. Army Engineer Research and Development Center Geotechnical and Structures Laboratory Structural Mechanics Branch

Sponsored by: Department of Defense Explosives Safety Board

Dynamic Material Properties of Steel

Increased strain rate \rightarrow Dynamic Increase Factor (DIF)

- Increased yield strength: DIF_v
- Increased ultimate tensile strength (UTS): DIF_u
- Unchanged modulus of elasticity
- Unchanged or slightly reduced elongation at rupture*

 f_{dy} = dynamic yield strength f_{du} = dynamic UTS f_y = static yield strength f_u = static UTS

UFC 3-340-02: Structures to Resist the Effects of Accidental Explosions

U.S. Army Corps of Engineers • Engineer Research and Development Center

Research Plan

UNCLASSIFIED

U.S. Army Corps of Engineers • Engineer Research and Development Center

Baseline Material Strength Properties ($f_v \& f_u$)

Instron 33R4206 Universal Testing System at ERDC-GSL

- Domestic A572-50 plate: 0.375 in. (9.525 mm) thick
- Domestic A992 S12x31.8 beam: 0.35-in.-web (8.89-mm) thickness
- ASTM E8 standard sheet-size specimen
- Static (quasi-static) strain rate of 0.00002 s⁻¹

 $DIF_y = \frac{f_{dy}}{f_y}$

Visual Comparison of Specimen Geometries

U.S. Army Corps of Engineers • Engineer Research and Development Center

Dynamic Material Strength Properties ($f_{dv} \& f_{du}$)

UNCLASSIFIED

5

Instrumentation

UNCLASSIFIED

- Stress calculated from top and bottom load cell data
- Inertial effects recorded by top and bottom accelerometers
- Elongation captured by high speed camera
- Strain gauge for calibration and highest strain rate

U.S. Army Corps of Engineers • Engineer Research and Development Center

Strain Calculation

UNCLASSIFIED

Engineering Strain:

- TrackEye Motion Analysis (TEMA) software by Image Systems AB
- Average strain and elastic strain rate calculated using elongation and original gauge length

TEMA Elongation Output

Vertical Resolution: 1,200 pixels: DR1-2 904 pixels: DR3-4

Pixel Length: 0.00105 in. [0.027 mm]: DR1-2 0.00155 in. [0.039 mm]: DR3-4

Strain Accuracy: 0.00018 (180 microns): DR1-2 0.00025 (250 microns): DR3-4

U.S. Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

9

Uniaxial Tension Test Results

Stress Intercept

at Yield

Strain Rate (s ⁻¹)		# of Tests A992	# of Tests A572-50
0.00002	SR	14	8
0.002	DR1	5	5
0.05	DR2	7	8
0.2	DR3	5	5
2.0	DR4	11	6

Increased strain rate \rightarrow

- Increased yield strength
- Increased ultimate tensile strength (UTS)
- Unchanged modulus of elasticity
- Unchanged or slightly reduced elongation at rupture →Increased elongation

U.S. Army Corps of Engineers • Engineer Research and Development Center

Experimental Results

Experimental Dynamic Increase Factor

UNCLASSIFIED

- Dependent on static yield strength
- Malvar and Crawford \rightarrow UFC reinforcing steel guidelines (4-13.2)

Malvar, L. J., and J. E. Crawford. "Dynamic Increase Factors for Steel Reinforcing Bars." Port Hueneme, CA: Naval Facilities Engineering Service Center, August 1998.

U.S. Army Corps of Engineers • Engineer Research and Development Center

Ductility Properties and DIF Comparison

- Increase of ductility properties with strain rate*
- Experimental DIF_y values between A36 and A514 design DIF curves at typical design rates (between dotted grid lines)

U.S. Army Corps of Engineers • Engineer Research and Development Center

Comparison of Experimental Results

UNCLASSIFIED

- Ex-Ten 50 tested by Cowell in 1969 ٠
- Ex-Ten 50 representative of A572-50 ٠
- Inertial effects neglected for Cowell's experiments •
- Cowell reported DIF_v calculated with lower yield strength ٠

Cowell, W. L. "Dynamic Tests on Selected Structural Steels." Technical Report R 642. Port Hueneme, CA: U.S. Naval Civil Engineering Laboratory, September, 1969.

Stress-Strain Curve at DR4

Engineer Research and Development Center U.S. Army Corps of Engineers •

Conclusions

UNCLASSIFIED

- Dynamic properties of A572-50 and A992 were determined and compared to static values
- Experimental dynamic increase factors were calculated
- A bi-linear, least-squares fit DIF curve was developed for each steel at increasing strain rates
- Design *DIF* and *c* curves are being developed from experimental values for implementation into UFC 3-340-02

Recommendations

- Conduct research on foreign produced steel that meets A572-50 and A992 specifications
- Conduct research on other foreign specified steels that may be used in protective construction

Effects of High Strain Rates on ASTM A992 and A572 Grade 50 Steel

Questions?

Matthew P. Murray matthew.p.murray@usace.army.mil

Stephen P. Rowell stephen.p.rowell@usace.army.mil

ERDC is the approved validation facility for mechanical splices of reinforcement used in protective design: UFC 3-340-02, Chapter 4-21.8.

Permission to publish was granted by Director, Geotechnical and Structures Laboratory

U.S. Army Corps of Engineers • Engineer Research and Development Center