GENERAL DYNAMICS Ordnance and Tactical Systems–Canada

A General Pressure Generation Model for Granular Propellant Fires

Frederick Paquet, Hoi Dick Ng and Mario Paquet

YOUR MISSION IS OUR MISSION

YOUR MISSION IS OUR MISSION

Solid propellants transform chemical enegy into mechanical energy through the generation of high pressures caused by the completion of a combustion reaction in a limited volume.

YOUR MISSION IS OUR MISSION

Solid propellants transform chemical enegy into mechanical energy through the generation of high pressures caused by the completion of a combustion reaction in a limited volume.

The high pressures are caused by:

- A solid to gas transformation in a limited volume
- An energy release (heat)

Solid propellants transform chemical enegy into mechanical energy through the generation of high pressures caused by the completion of a combustion reaction in a limited volume.

The high pressures are caused by:

- A solid to gas transformation in a limited volume
- An energy release (heat)

Since applications vary widely in their requirements, propellants can exhibit a large array of combustion behaviors.

YOUR MISSION IS OUR MISSION

GENERAL DYNAMICS Ordnance and Tactical Systems – Canada YOUR MISSION IS OUR MISSION

San Diego - August 8th 2018

Previous work

An attempt was made by Graham to model explosion venting and define a critical vent area ratio by equating pressure rise and decrease terms:

 $\frac{A_v}{S_B} = \frac{RT_B\rho\alpha}{MC_DA^*(A-BT_o)}$

Previous work

An attempt was made by Graham to model explosion venting and define a critical vent area ratio by equating pressure rise and decrease terms:

 $\frac{A_v}{S_B} = \frac{RT_B\rho\alpha}{MC_DA^*(A-BT_o)}$

A number of empirical relations have been published for gas and dust equations (see NFPA 68 for examples).

• Gas explosions:
$$A_v = CA_s P_{red}^{-1/2}$$

• Dust Explosions:
$$A_v = 10^{-4} K_{st} V^{0.75} \left(\frac{P_{max}}{P_{red}} \right)^{1/2}$$

 \rightarrow Deflagration index, K_{st} , and reduced pressure, P_{red} .

GENERAL DYNAMICS Ordnance and Tactical Systems – Canada YOUR MISSION IS OUR MISSION

San Diego - August 8th 2018

Theoretical background

Equation of state:

Nobel-Abel:

P(V-b) = NRT

when $X = cb \gg 0.01$

Most cases can use the ideal gas law:

$$PV = NRT$$

GENERAL DYNAMICS Ordnance and Tactical Systems – Canada YOUR MISSION IS OUR MISSION

Theoretical background

Equation of state:

Spatial pressure variation:

Nobel-Abel:

$$\chi = rac{m_{air}c_{air}}{\dot{m}_{gen}d}$$

P(V-b) = NRT

when

Lumped parameters $\rightarrow \chi \gg 1$

 $X = cb \gg 0.01$ Most cases can use

the ideal gas law:

Case	χ
	(dimensionless)
0.7 L closed vessel with a fast burning propellant	0.9
0.7 L closed vessel with a slow burning propellant	5.6
60 L tank with a fast burning propellant	420
1800 L enclosure with a fast burning propellant	561
106 L enclosure with a fast burning propellant	675

PV = NRT

GENERAL DYNAMICS Ordnance and Tactical Systems – Canada

YOUR MISSION IS OUR MISSION

Theoretical background Compressibility: Equation of state: Spatial pressure variation: Studied pressures below 10 kPa Nobel-Abel: $\chi = \frac{m_{air}c_{air}}{\dot{m}_{gen}d}$ P(V-b) = NRT $\rightarrow Ma < 0.30$ Lumped parameters $\rightarrow \chi \gg 1$ Bernoulli's law: when $X = cb \gg 0.01$ $\mathbf{v} = \left(\frac{2P}{\rho_{gas}}\right)^{1/2}$ Case (dimensionless) Most cases can use 0.7 L closed vessel with a fast burning propellant 0.9 0.7 L closed vessel with a slow burning propellant 5.6 the ideal gas law: 60 L tank with a fast burning propellant 420 Other cases: 1800 L enclosure with a fast burning propellant 561 106 L enclosure with a fast burning propellant 675 isentropic eq.

PV = NRT

GENERAL DYNAMICS Ordnance and Tactical Systems-Canada YOUR MISSION IS OUR MISSION

San Diego - August 8th 2018

Theoretical model

Mass balance: $\dot{m}_e = \dot{m}_{gen} - \dot{m}_{vent}$

GENERAL DYNAMICS Ordnance and Tactical Systems-Canada

YOUR MISSION IS OUR MISSION

Theoretical model

Mass balance: $\dot{m}_e = \dot{m}_{gen} - \dot{m}_{vent}$

Vented gases can be modelled by Bernoulli's law and the ideal gas law:

$$\dot{m}_{vent} = C_D A \left(\frac{2 \rho_{gas} m_e RT}{M_w V} \right)^{1/2}$$

Theoretical model

Mass balance: $\dot{m}_e = \dot{m}_{gen} - \dot{m}_{vent}$

Vented gases can be modelled by Bernoulli's law and the ideal gas law:

$$\dot{m}_{vent} = C_D A igg(rac{2
ho_{gas} m_e RT}{M_w V} igg)^{1/2}$$

The end result is the following model:

$$\dot{m}_e + C_D A igg(rac{2
ho_{gas}RT}{M_w V} igg)^{1/2} m_e^{1/2} - \dot{m}_{gen} = 0 \qquad \textit{when} 0 \leq t \leq t_{\textit{burn}}$$

GENERAL DYNAMICS Ordnance and Tactical Systems – Canada YOUR MISSION IS OUR MISSION

15

Mass balance: $\dot{m}_e = \dot{m}_{gen} - \dot{m}_{vent}$

Vented gases can be modelled by Bernoulli's law and the ideal gas law:

$$\dot{m}_{vent} = C_D A \left(\frac{2 \rho_{gas} m_e RT}{M_w V} \right)^{1/2}$$

The end result is the following model:

$$\dot{m}_e + C_D A \left(rac{2
ho_{gas}RT}{M_w V}
ight)^{1/2} m_e^{1/2} - \dot{m}_{gen} = 0 \qquad when 0 \le t \le t_{burn}$$

$$\dot{m}_e + C_D A igg(rac{2
ho_{gas} RT}{M_w V} igg)^{1/2} m_e^{1/2} = 0 \qquad \textit{when } t > t_{\textit{burn}}$$

GENERAL DYNAMICS Ordnance and Tactical Systems – Canada YOUR MISSION IS OUR MISSION

16

Testing

1800 L setup

Typical measurement

17

YOUR MISSION IS OUR MISSION

Testing

Propellant	Geometry	Heat of explosion	Composition	
		(J/kg)		
SB1	Unitubular	3871	NC: 98% / Inert: 2%	
SB2	Unitubular	3135	NC: 90% / Inert: 10%	
DB1	Cord	5392	NC: 60% / NG: 39% / Inert: 1%	
DB2	Unitubular	4490	NC: 73% / NG: 25% / Inert: 2%	

YOUR MISSION IS OUR MISSION

Flame propagation – Induction time

GENERAL DYNAMICS Ordnance and Tactical Systems – Canada YOUR MISSION IS OUR MISSION

San Diego - August 8th 2018

Data analysis

Best statistical model: $P_{max} = \frac{194.6m^{0.97}}{A^{1.34}}$ (with $r^2 = 0.91$)

GENERAL DYNAMICS Ordnance and Tactical Systems – Canada YOUR MISSION IS OUR MISSION

San Diego - August 8th 2018

Departure from theoretical form suggests: $C_D \approx A^{1/2}$

GENERAL DYNAMICS Ordnance and Tactical Systems - Canada

YOUR MISSION IS OUR MISSION

San Diego - August 8th 2018

Starting with the previously derived mass balance:

$$\dot{m}_e + C_D A igg(rac{2
ho_{gas}RT}{M_w V} igg)^{1/2} m_e^{1/2} - \dot{m}_{gen} = 0 \qquad when 0 \le t \le t_{burn}$$

Starting with the previously derived mass balance:

$$\dot{m}_e + C_D A igg(rac{2
ho_{gas}RT}{M_w V} igg)^{1/2} m_e^{1/2} - \dot{m}_{gen} = 0 \qquad when 0 \leq t \leq t_{burn}$$

An energy balance is also considered:

$$\Delta T = \frac{\dot{m}_{gen} E \Delta t - C_v \dot{m}_{vent} T \Delta t}{C_v (m_{air} + \rho_{gas} V)}$$

GENERAL DYNAMICS Ordnance and Tactical Systems – Canada YOUR MISSION IS OUR MISSION

Starting with the previously derived mass balance:

$$\dot{m}_e + C_D A igg(rac{2
ho_{gas}RT}{M_w V} igg)^{1/2} m_e^{1/2} - \dot{m}_{gen} = 0 \qquad when 0 \leq t \leq t_{burn}$$

An energy balance is also considered:

$$\Delta T = \frac{\dot{m}_{gen} E \Delta t - C_v \dot{m}_{vent} T \Delta t}{C_v (m_{air} + \rho_{gas} V)}$$

Gas density obtained through EOS: $\rho_{gas} = \frac{PM_w}{RT}$

Starting with the previously derived mass balance:

$$\dot{m}_e + C_D A \left(rac{2
ho_{gas}RT}{M_wV}
ight)^{1/2} m_e^{1/2} - \dot{m}_{gen} = 0 \qquad when 0 \le t \le t_{burn}$$

An energy balance is also considered:

$$\Delta T = \frac{\dot{m}_{gen} E \Delta t - C_v \dot{m}_{vent} T \Delta t}{C_v (m_{air} + \rho_{gas} V)}$$

Gas density obtained through EOS: $\rho_{gas} = \frac{PM_w}{RT}$

Here, the mass generation rate can be approximated by:

Volume	Min. density	Max. Temperature
(m ³)	(kg/m^3)	(K)
0.06	0.74	452
1.8	0.48	823
100	0.18	1798

GENERAL DYNAMICS Ordnance and Tactical Systems-Canada YOUR MISSION IS OUR MISSION

The gas density is estimated as

Volume	Min. density	Max. Temperature
(m ³)	(kg/m ³)	(K)
0.06	0.74	452
1.8	0.48	823
100	0.18	1798

$$ho_{gas} = 0.47 \, V^{-0.19}$$

Subst. in theoretical model

e.g.
$$P_{max} = \frac{1.06\dot{m}^2 V^{0.19}}{A^{2.66}}$$

22 /

Comparing the scale dependent model and measured results:

 \rightarrow Loss in quality due to the uncertainty in estimating \dot{m}_{gen} .

GENERAL DYNAMICS Ordnance and Tactical Systems-Canada	YOUR MISSION IS OUR MISSION	28
	San Diego - August 8 th 2018	

Future work

- Application to safety aspects
 - Quantities distances relations, uniforms, building process design, ...
- Better estimate of the mass combustion rate
- Application to "non dry" (or green) product
- Application to stick geometries (e.g. rocket motors)
- Application to cases at higher densities (higher pressures)

YOUR MISSION IS OUR MISSION

Acknowledgements

- General Dynamics OTS Canada Valleyfield
 - Use of their burning ground and equipments
 - Donation of the propellant samples (value \approx 125,000\$)
- Natural Science and Engineering Research Council
 - Work partly supported by Engage Grant EGP 415114-11