

Munitions Safety Information Analysis Center

Supporting Member Nations in the Enhancement of their Munitions Life Cycle Safety

INSENSITIVE MUNITIONS EXPLOSIVE ORDNANCE DISPOSAL CHALLENGES

2018 INTERNATIONAL EXPLOSIVES SAFETY SYMPOSIUM SAN DIEGO

Martin Pope TSO Munitions Systems Technology +32.(0)2.707.55.58 <u>m.pope@msiac.nato.int</u> Ernie Baker TSO Warheads Technology +32.(0)2.707.38.44 <u>e.baker@msiac.nato.int</u>

Unclassified / Unlimited Distribution

Supporting Munitions Safety

Background IM Challenges Render Safe Procedures EOD Tools Shaped Charge Jet Conclusion

- Development of appropriate procedures for the disposal of explosive ordnance are mandated by NATO STANAG 2143 (AEODP-10)
- As a result of Insensitive Munitions (IM) development, many munitions are being introduced with increasingly less shock sensitive energetics with increased critical diameters
- This poses problems for Explosive Ordnance Disposal (EOD) operations in conducting a successful Render Safe Procedure (RSP)
- EOD community understanding of what IM actually means

- Traditional EOD methods for disposal consist of a number of tried and trusted techniques used singly or sometimes in combination
 - shock initiation by donor charge
 - directed energy attack (e.g. shaped charge, EFP)
 - projectile attack.
 - thermal initiation charge
 - combinations of some of the above
 - In addition EOD operations sometimes require a non-detonating response (Type IV to Type V IM response)
 - risk of detonation unacceptable
 - vital military installation
 - cultural site etc.

Increasing proliferation of IM filled ERW
Require rapid and reliable means of disposal

- rapid battle field clearance
- post operational clearance
- in-situ disposal
- casualty weapon disposal
- Current methods not appropriate

- NATO EOD Group area of concern
 - NATO nations access to RSPs
 - no procedures or guidance currently available
- NATO munitions to be marked with main fill type (AOP 2 and JOTP 70)
 - identifies filling type
 - assists with election of appropriate RSP
- Require rapid and reliable means of disposal
 - rapid battle field clearance
 - post operational clearance
 - in-situ disposal
 - casualty weapon disposal

Are current weapons suitable? existing systems effectiveness? manufactured charges still viable? modular user filled charge?

- Useful work already undertaken
 - US Navy
 - EADS TDW
 - need to transition to generic guidance
 - make more comprehensive
 - review other techniques

- Shaped charge jet initiation
- Held model critical value for explosive detonation:

 $V^2d=constant threshold$ where, V = impact velocity, d = impactor diameter.

Supporting Munitions Safety

Unconfined covered charges appear to be the most difficult to initiate!

Arnold W., Rottenkolber E., Hartmann T., "Significant Charge Parameters influencing the Shaped Charge Jet Initiation", 2013 Insensitive Munitions & Energetic Materials Technology Symposium, San Diego, CA, USA, 7-10 October May, 2013. 9 Unclassified / Unlimited Distribution

Larger v^2 d values required for initiation by larger shaped charges!

Arnold W., Rottenkolber E., Hartmann T., "Challenging v²d", 2015 Insensitive Munitions & Energetic Materials Technology Symposium, Rome, Italy, 18 – 21 May, 2015. 10

Unclassified / Unlimited Distribution

Supporting Munitions Safety

Unclassified / Unlimited Distribution

Supporting Munitions Safety

Most items can be detonated with a reasonable 50mm shaped charge!

Held Criteria Correlation to Critical Diameter

IMX-101: 66.04mm critical diameter Correlation gives 1854 mm³/µs²

IMX-101 estimated to require a 450mm diameter to be detonated!

Conclusion

- IM compliant munitions do present an EOD challenge
- Reduced sensitiveness energetic materials require different considerations
 - rapid and reliable disposal
 - low order techniques
 - alternate methods of initiation
- Need to provide simple but effective guidance to EOD technicians
- Initially consider directed energy weapons (SCJ, EFP)
- Assess other EOD weapons and techniques
- Institutionalize process for addition of guidance into NATO and national Standards for EOD operations
- Work with guidance of NATO EOD group
- Support from other interested parties welcome, please contact authors

