Safety Assessments of Thermally Damaged Energetic Materials

2018 International Explosives Safety Symposium & Exposition

Evan M. Kahl, Peter C. Hsu, Keith R. Coffee, Benjamin J. Yancey, A. J. Nelson, Harris E. Mason, G. Fred Ellsworth, Thomas E. Healy, Jonathan C. Crowhurst, Thomas V. Myers and John G. Reynolds

August 8, 2018

UCRL-PRES 755241 (942108) This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Thermal Damage of Energetic Materials

- What is thermal damage of TATB: thermal damage is defined as when TATB is heated, it becomes more sensitive to stimuli (decomposes into more sensitive compounds)
- Why do we care: because if TATB is more sensitive and can react, then we must know how to handle the material safely
	- Example: testing facilities—sensitized material can not be the same is the parent material. New protocols and protective measures must be in place
	- Example: fire!—first responders will have to be guided to handle the fire safely. When to fight and when to run
	- Example: clean-up—when the event is over, how do you handle the residue safely?
- **How do we do understand thermal decomposition of TATB: determine** what causes the sensitivity
	- Determine whether intermediates are more sensitive
	- Detect intermediates in damaged samples so the danger can be assessed
	- Improve decomposition models to predict time to explosion to covert the space

This presentation summarizes our research into the thermal sensitization of TATB

Previous Studies on Thermal Decomposition Products $199.2 < 2.11$ LE COMMONDEN <u>Loompool of</u> LX-17 250 2 > 12 n Products **3.5605 1.9206 1.9206 1.9206 1.9206 1.9206 1.9206 1.9206 1.9206 1.9206 1.9206 1.9206 1.9206 1.9206 1.9206 1.920**

Characterization decomposition products Sharma et al. *circa* 1980

XPS of N1s binding energies of TATB heated to 260 °C

Characterization of Pristine and Damaged 2 hrs Several material properties (density, sound speed, gas permeability, porosity, surface area, burn **TABLE 3. LX-17 Sample volume and bulk** Hsu et al. circa 2006 Changes in sensitivity upon heating

LX-04

Volume and right after the damage experiments were done that the contract of the second state \mathcal{L}_1 density of LXsensitivities to impact, friction and spark. *AND neated to* **Sample Discoloring, Density, and Dimensions** *190 and 250 °C*

TMD is theoretical maximum density

Models of decomposition Hobbs & Kaneshigi *circa* 2014

4 step reaction mechanism

Synthesis of dec °C. The bulk density of LX-04 decreased by 0.27% and 190 Belmas et al. *circ* \sim 0.01, but decreased by 4.011. **Closed Pores and Open Pores** Synthesis of decomposition products Belmas et al. *circa* 2004 \blacksquare

TATB thermal decomposition studies started around 1970

What happens to TATB when heated?

Mild severity PODTX

Most

severe

STEX

More **Severity SSVCT**

Experimental—Sensitization Methods

PODTX (Pressure monitored One Dimensional Time to Explosion)

STEX (Scaled Thermal

Explosion eXperiment)

1000-g samples

Taken to explosion

Reacted ~ 2-g sample Sample heated 200 to 300 °C Held for s to h Seals did not rupture Not taken to explosion

LX-17 86 & 98% TMD

Top come off

SSVCT (Small-Scale Vessel Cook-off Test)

100-125-g samples Nominal 3000 psi limit Sample taken to venting of reactor

Treatment methods chosen to widely vary thermal conditions

Wall ruptures

Thermal Sensitization and Analysis

Four thermal treatments; SSST and molecular characterization

Small-Scale Safety and Thermal Testing

ERL Impact **ABL Friction** Custom ESD

CRT Figure 1, is assembled in the following order: Spacer 1, crucible with sample, spacer 2,

ABL ESD DSC

SSST—Impact, Friction, Spark Sensitivity

Products do not show sensitivity by Drop Hammer and BAM Friction, Minor changes in ABL ESD testing, closer to HMX than PETN

SSST—Standard Scanning Calorimetry (DSC)

Most samples look like this one

DSC (from SSVCT) shows wide range of profile parameters

SSST—Thermal Stability Test (CRT)

All thermally treated samples produce more gas than LX-17

Thermal Sensitization and Analysis

Four thermal treatments; SSST and molecular characterization

Reaction of LX-17 in Micro Thermal Reactor (µTR)

In-situ thermal with spectroscopic characterization by Infrared LX-17 powder; 7 °C/min heating rate; μTR under pressure CN species $C-NH_2(v)$ $C-NO_2(v)$ CO_2 Time Temp $|CO_2|$ mm:ss, °C $H₂O$ 45:56, 360 44:55, 352 Ph 43:53, 345 elative absorbance 42:52, 337 41:51, 329 38:47, 305 35:43, 280 16:19, 116 00:00, 22 $NH₂$ Рh $NO₂$ 3000 2500 2000 1000 500 4000 3500 1500 $NO_2(\delta) NO_2(\gamma)$ wavenumber (cm⁻¹)

TATB goes away and thermal products form

Characterization—Detection of Molecular Intermediates

HPLC separation of **DMSO extract** of residues

APCI-MS mass verification at specific retention times

indicates no intensity at a specific retention time

TATB, F_{x1} , F_{2} , F_{x2} , F_{3} , F_{x3} , T3A, T4A verified by standards

m/z 241, 300, 237, 221, 335 yet to be unequivocally identified (M-H)

Column separation of DMSO extracts shows several high molecular weight intermediates by APCI-MS detection

Characterization—Intermediates Distribution

SSVCT Products; DMSO Extract; relative concentrations to TATB concentration

F1 is the most abundant TATB-like decomposition product Concentrations follow inverse of TATB concentration in sample Similar behavior appears in the STEX and PODTX samples

Characterization—Detection of Molecular Intermediates

Lawrence Livermore National Laboratory UCRL-PRES-755241 (942108)

Characterization—FTIR of Solid Residue

FTIR shows carbon-nitride bonding network, similar to para-*iso***-cyanogen**

Characterization—XPS of Solid Residue

X-ray photoelectron spectroscopy shows functional groups Sputtered is using atom sputtering to clean surface

SSVCT 5

C 1s and N 1s XPS analyses indicate amorphous carbon-nitride in amorphous carbon; no indication of nitro groups ¹³C-NMR corroborates complex C-N structures

Characterization—Light Gas Analysis by SDT-MS

Sample: LX17_SSVCT Shot # 5

DSCTGA (DECEMBER 1997)

 $\mathcal{F}(\mathcal{F}) = \mathcal{F}(\mathcal{F})$ ar desktop $\mathcal{F}(\mathcal{F})$

Light gas evolution follows overall enthalpy release and weight loss

ecompositic t Visualized Decomposition Mech N O **C** TATB-FX 1 TATB-FX 2 TATB-FX 3 TATB-FX 2A **Current Visualized Decomposition Mechanisms**

 $-H_2O$ \rightarrow $-H_2O$ $-f_{III}$ $\overline{ }$ $\frac{1}{\sqrt{2}}$ Mono-furazan
ighthracan \rightarrow Di-furazan \rightarrow Tri-furazan \rightarrow CHNO_x + Amorphous C + C $-H_2O$ $-H_2O$ $-H_2O$ TATB Mono-furazan \longrightarrow Di-furazan \longrightarrow Tri-furazan \longrightarrow CHNO_x + Amorphous C + C-N

O

Conclusions

- Bulk Properties do not show much change—impact (n), friction (n); spark (y), DSC (y), CRT (y);
- Molecular characterization show pathway—TATB to benzofurazans (benzofuroxans?) to C-N in amorphous C-residue
- Thermal analysis show gas evolution—light gases, for example HCN, are a product of TATB and TATB residue decomposition
- Parameters that have not been varied but need to be considered
	- Effects of different polymers in formulations
	- Particle size distributions
	- Water contents
	- Synthesis
- What does this indicate about design
- What does this indicate about response?

