

EXPERIMENTAL RESULTS OF THE CONVECTIVE COMBUSTION OF AN HD 1.3 MATERIAL

Cynthia P. Romo and Jeffrey W. Phillips

Naval Air Warfare Center Weapons Division, China Lake, California

Alice I. Atwood Naval Systems Incorporated, Ridgecrest, California

Josephine Covino

Department of Defense Explosives Safety Board, Alexandria, Virginia

International Explosives Safety Symposium & Exposition 06 – 10 August 2018 San Diego, CA

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited

- Improving computer models
 - Predict outcome of combustion-driven events
- Experimental Results
 - Flame propagation throughout gun propellant bed
 - Resulting pressurization rate

- Current siting methodologies for energetics other than HD 1.1 may not be adequate
- Previous testing on HD1.3 M1 gun propellant
 - Modeling and simulation tools are needed
 - Accurately describe initial transient convective combustion conditions

- Continuation of convective combustion experiments presented at JANNAF (Dec 2017, Newport News, VA)
 - Understand flame propagation and pressurization rate of M1 during transient combustion events
 - Thin-wall vs thick-wall polycarbonate tubes
- Support and improve computer models
 - Predict combustion-driven events in concrete structures

- Main Charge
 - M1 Propellant
 - 7 Perf pellets
 - 4.77 mm, 10.765 mm, and 0.451 mm perf

Ingredient	Weight %	
Nitrocellulose	85.00 ± 2.00	
Dinitrotoluene (DNT)	10.00 ± 2.00	
Dibutylphthalate (DBT)	5.00 ± 1.00	
Diphenylamine (DPA)	1.00 ± 0.10	
Lead carbonate	1.00 ±0.20	
Potassium sulfate	1.00 ±0.30	

0.5-cm

- Ignitor
 - Reynolds SQ-80 (450 mg Thermite)
- Aide
 - Red Dot Smokeless Powder

Confinement Configurations

- Thin-walled container:
 - 5.75" ID
 - 6" OD
 - 0.125" wall thickness
 - 13" height

- Thick-walled container:
 - 1" ID
 - 3" OD
 - 1" wall thickness
 - 8" height

Equipment and Instrumentation

7

Range Test Configuration

- M1 propellant is loaded into polycarbonate tube
- Tube is secured between base plate and top plate
- Igniter and ignition aide are housed in a basket

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited

- Six tests performed
 - 4 thin-wall, 2 thick-wall
- Thin-wall: interaction of flame with porous bed
- Thick-wall: allow additional video recording time

Test Number	Ignition Aide [g]	M1 Weight [g]	Bed Height [cm]	%TMD
SSCC_01	20.005	3186.364	21.285	57.054
SSCC_02	60.036	3186.364	20.955	57.953
SSCC_03	65.002	3186.364	20.955	57.952
SSCC_04	65.004	3204.545	21.590	56.569
SSCC_05	1.416	65.400	16.805	47.633
SSCC_06	1.416	65.480	16.538	50.781

Pressure Trace Sample – SSCC_03

65.0018 g of Red Dot aide and 7.01 lbs (3179.68 g) of M1 Propellant

in a polycarbonate tube

11

Thin-wall Tests – Pressure Results

- Containers rupture/vent around 450 psi
- Amount of ignition aide present determines delay
- Data shows good repeatability

NAVMAIR

Thick-wall Test – Pressure Results

- Data for SSCC_05 No pressure recorded
- Tube vented at about 23 ms
- Maximum pressure prior to failure 10,880 psi

Peak Pressure Comparison

- Ignition delays closer for SSCC_02 06
 - Scaled down amount of igniter
 - Thick-walled case rupture 7 ms earlier

Flame Front Tracking

14

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited

NAVMAIR

Average Flame Traces

Values calculated from 3 areas using high speed videos of every shot

Transient Zones

- 1: Pre-Ignition
 - Thermal profile in porous bed established
- 2: Acceleration
 - Early gasification of propellant occurred.
- 3: Deceleration
 - Volume increase or tube failure.

Flame Propagation For All Tests

- Flame displacement with respect to time of each test
- No pre-ignition zone for SSCC_05 and SSCC_06
 - Clear visibility required for code to run Fireball/smoke blocked view
 - Assumed pre-ignition zone starts between that of SSCC_02 and SSCC_03

Acceleratory Zone: Burning Rates

- Exponential curvefit applies to acceleratory zone
- Non-linear rate convective burning
- 3x higher burning rate for thick-wall tests

Summary and Conclusions

- Better characterize flame propagation, combustion, and pressurization rates
- Experimental values applied to models to determine combustion characteristics of HD 1.3 materials
- Thin-walled tests Partial ignition of propellant bed
- Thick-walled tests propellant bed fully ignited and consumed
- Additional data points collected with thicker confinement
- Pressure profiles for thin-walled tests pressure tolerance of the confinement between 400 to 500 psi
- Thick-walled test 10,880 psi max pressure
 - Repeatability of results not confirmed

Summary and Conclusions

- Scaling of aide-to-propellant was accurate
- Flame rate profiles followed the same trend
 - Pre-ignition, acceleration, and deceleration zones
 - Material underwent convective combustion, not linear combustion
- Influence of quantity of aide used
 - Reaction delay time
 - More aide \rightarrow faster the reaction
 - Contribution to pressure rise still unknown
 - Acceleration zone uniformity
 - More uniform with more aide

Future Work

- Ongoing modeling effort
- Planned tests at NAWCWD
 - Calibration shot 1: 1 barrel unconfined
 - Determine output of a single barrel
 - Calibration shot 2: 2 barrels unconfined
 - Observe sympathetic reaction of barrels
 - Calibration shot 3: ISO container with 16 barrels
 - Test effect of confinement
 on reaction
 - Main shot: ISO container with 32 barrels

Questions

References

- Naval Air Warfare Center Weapons Division. Combustion of Hazard Division 1.3 M1 Gun Propellant in a Reinforced Concrete Structure, by A. D. Farmer, K. P. Ford, J. Covino, T. L. Boggs, and A. I. Atwood. China Lake, California, NAWCWD, August 2015. (NAWCWD TM 8742, publication UNCLASSIFIED.)
- Naval Air Warfare Center Weapons Division. Combustion of Hazard Division 1.3 M1 Gun Propellant in a Reinforced Concrete Structure. Part 2. Tests 5 Through 7, by A. D. Farmer, K. P. Ford, J. Covino, et al. China Lake, California, NAWCWD, (in process). (NAWCWD TM 8764, publication UNCLASSIFIED.)
- R. R. Bernecker, "The Deflagration-to-Detonation Transition Process for High-Energy Propellants—A Review," AIAA Journal, Volume 24, No. 1, January 1986.
- A. I. Atwood, P.O. Curran, K. P. Ford, S. A. Baynar, J. F. Moxnes, and G. Odegardstuen. "Convective Burning Studies of Pyrotechnic Powders," Eighth International Symposium on Special Topics in Chemical Propulsion (8-ISICP), Cape Town, South Africa, November 2009. (Also to be published by Begell House, 2009.)
- Naval Air Warfare Center. Convective Burning in Propellant Defects: A Literature Review by H. H. Bradley Jr. and T. L. Boggs. China Lake, California, March 28 1978.b (NWC TP 6007, publication UNCLASSIFIED.)
- C. P. Romo, A. I. Atwood, and J. Covino. "Sub-Scale Convective Combustion of M1 Propellant," Proceedings of the 48th JANNAF Combustion Meeting, (publication pending).
- L. K. Davis and Max B. Ford. "Quantity Distances for Ammunition in ISO Containers," ERDC/GSL TR-01-18, US Army Corps of Engineers, Engineer Research and Development Center, September 2001.

