

Lightning Risk Assessment Tailored to Applications Involving Structures Housing Explosives

Alain Rousseau

SEFTIM

Vincennes, FRANCE

Mitchell Guthrie

Engineering Consultant

Blanch, NC USA

Paper Objectives

- Identify existing level of detail explosives applications are addressed in NFPA 780
- Recommend improvements to Annex L based on internationally agreed methods and scientific literature

Risk Assessment References

- NFPA 780
 - Cited by DoD explosives safety standards for baseline requirements
 - Clause 8.1.1 cites use of risk assessment to justify exclusion of LPS requirements
- Risks to personnel and property to be analyzed and documented, along with any methods used to reduce the risk to:
 - justify waivers for mission-critical applications
 - justify grandfathering of requirements

Risk Assessment Methods

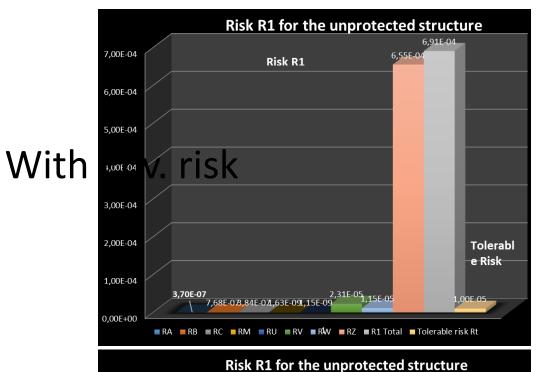
- NFPA 780 Annex L
 - Detailed Assessment based on IEC 62305-2 methodology
- Strike QRA
 - DDESB developed quantitative assessment
- IEC 62305-2
 - Currently in maintenance review for Edition 3

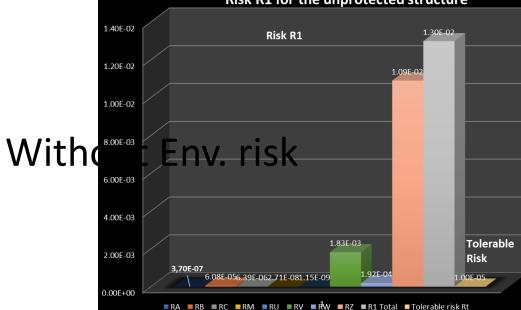
NFPA 780 Annex L.6 Explosives Citations

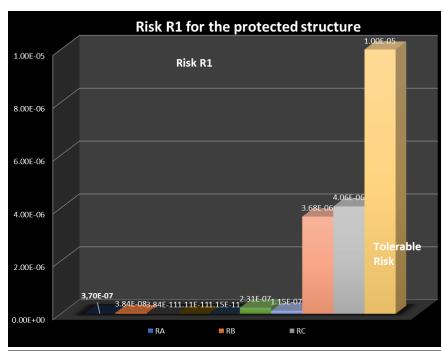
- Loss value for risk of explosion (L_{O}) [Table L.6.7.9]
- No reduction for provisions taken to reduce the consequences of fire [Table L.6.7.12]
- Risk of fire = 1 [Table L.6.7.12]
- Does not consider any risks outside the structure

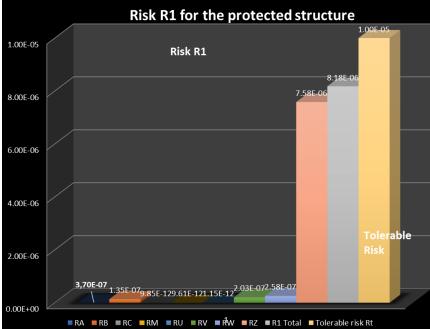
Recommended Revisions – L / P Factors

- Revise Loss Factor Table L.6.7.9 to reflect L_F and Note 2 from IEC 62305-2 Edition 2
 - NOTE 2 In case of a structure with risk of explosion, the values for $L_{\rm F}$ and $L_{\rm O}$ may need a more detailed evaluation, considering the type of structure, the risk of explosion, the zone concept of hazardous areas and the measures to meet the risk.
- Introduce Loss $L_{\rm E}$ to address damage to structure that effects surrounding structures or the environment
 - Rousseau and Kern (2014) provide considerations for additional loss factors that should be considered
- Introduce zone concept of IEC 62305-2 to address areas containing hazardous (classified) locations and/or energetic materials
- Introduction of $P_{\rm TWS}$ to account for reliability of Lightning Warning Systems


Factors relating to Thunderstorm Warning


- Thunderstorm Warning Systems (TWS) allowed by services as factor in waiving requirement for LPS
- Probability P_{TWS} that a thunderstorm warning system does not detect a lightning related event in the target area must be considered
 - Value given in IEC 62793 as failure to warn ratio (FTWR)
 - Generally available from the manufacturer's product data sheet
- P_{TWS} is reduction factor in applicable probability calculations
- P_{TWS} =1 if FTWR not declared by manufacturer




Example of Environmental Risk Consideration

- Evaluation of R1 Loss of life or permanent injury
- Ground flash density 4 flashes / km² / year
- Structure has coordinated SPDs on power and data lines
 - Case 1 SPD Level I
 - Case 2 SPD Level I++
- Thunderstorm warning system in use at the site
- Lightning protection system meets NFPA 780, Chapter 8 (LPL II)

Additional (Future) Considerations

- Consideration of Loss of Life or Injury due to thermal effect, overpressure, or fragmentation in vicinity of explosion
- Consider Quantity-Distance data in probability of physical damage or injury?
- Build on Strike-QRA concepts?

Summary

- NFPA 780 Annex L cited as a method to assess lightning risk for explosives applications
- Revision of existing assessment method is proposed to reflect state of knowledge for explosives applications
- Items for consideration available in IEC 62305-2 Edition 2 and peer reviewed publications
- Future considerations are identified that can provide more accurate assessments when justified and probability and loss data is available