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Abstract 

This paper presents a mixed Strain/Displacement Finite Element (FE) approach, which has been used for fracture 

computation in strongly coupled blast problems. The main difference with the standard irreducible formulation (dis-

placement-based formulations) is that the tensorial strain field is one of the main FE variables of the discretized prob-

lem, hence, its rate of convergence is one order higher than the strain field obtained from standard displacement 

formulations. Since the strain (or strain rate) is the main variable to compute damage and fracture of materials, a more 

accurate computation of such a field gives more confident results in practical problems. Furthermore, numerical ex-

perience has shown that low order approximation of the strain field may produce totally non-physical and mesh de-

pendent fracture results. An additional benefit of the mixed strain/displacement formulation presented below, is that 

it is stable for linear elements, which are very attractive due to its low computational cost, and its relatively fast pre-

processing stage (CAD and mesh generation). 

Finally, the paper analyses and compares the numerical results of a coupled Computational Fluid Dynamics (CFD) / 

Coupled Structural Dynamics (CSD) blast simulation with experimental data. The simulation consisted of the response 

of two reinforced concrete walls to loads from a cased charge, placed in close proximity to the center of one of the 

walls. This real-life case also shows the importance of taking into account the dust production due to the concrete 

fragmentation, which absorbs energy from the flow, and damps in a very dramatic way the shock strength. 

 

Introduction 

Theoretical modeling and computational resolution of the strain localization process up to structural failure remains 

an open challenge in computational solid dynamics (CSD). To date, most attempts to model discontinuities with stand-

ard local approaches produce non-physical solutions, which are fully determined by mesh resolution and orientation. 

Cervera et al. (see [1]) showed this must be due to the poorly numerical approximation that is obtained if irreducible 

formulations are used (standard displacement formulations). The previous statement may be simply explained by tak-

ing into account that in irreducible formulations, the strain, which is the variable of most interest for fracture predic-

tion, are obtained by differentiation of the fundamental unknowns (the displacement field). Hence, if linear (or tri-

linear) FE are used, the strain field has a theoretical convergence of order O(h) in L2-norm (h is the mesh size). 

Therefore, the strain field has zero point convergence order (in L∞-norm), which means that even though the mesh 

resolution is improved, point values do not converge. Since point strains and/or stresses (values at integration points) 

are used to predict material damage and element fracture, it is of no surprise that localization bands strongly depends 

on the mesh size and orientation. Contrariwise, when using the strain and displacement fields as primary variables of 

the formulation, the added accuracy and convergence seems to be enough to satisfactorily solve the mentioned mesh 

dependency problem (see [1] and references therein). 

Herein an explicit, strain/displacement, large-deformation FE formulation to deal with strong coupled CFD/CSD 

(computational fluid dynamics/computational solid dynamics) problems is presented. It is widely known that, if stand-

ard equal interpolation is used for the spatial discretization of both fields, strain and displacement, the scheme locks 

and produces meaningless and non-stable results since the inf-sup condition is not fulfilled. However, equal continu-

ous FE functions are highly desirable from a computational point of view. Therefore, to circumvent the severe re-

strictions imposed by such a mathematical condition, in this work the weak forms of the mixed strain/displacement 

solid dynamic equations are obtained by a variational multiscale stabilization (VMS) approach. Time discretization 

of the final continuous forms is achieved by an explicit Newmark scheme, and the spatial one by using Q1/Q1 (hexa-

hedrons) or P1/P1 (tetrahedrons) standard functions. Several VMS methods were developed in [1-3] for the small-

deformation static solid equations, and successfully applied to localization problems: Totally physical and mesh inde-

pendent solutions were obtained where the standard displacement formulation failed miserably. 

Finally, the CSD approach is loosely coupled with the widely tested CFD code FEFLO to solve real blast and impact 

problems (see [4]). A benchmark case and one real application with dust production is presented. 



 

 

 
Theoretical Aspects 

The strong form of the continuous solid dynamics problem can be stated as: 

 
 
 
 
 
 
 
 
The constitutive material equation is replaced in equation (2) to obtain: 

 

 

 

 

Which, after time integration, may be written as: 

 

 

 

 

Hence, the final strong form to be solved may be stated as: 

 

 

 

 

Equation 5 is the classical irreducible continuous problem expression to be solved, which, as it was already mentioned, 

shows very poor strain (i.e. damage and fracture field) point convergence, when low order elements are used. To 

improve such a shortcoming, the previous strong form may be re-written in a way that the strain field becomes a main 

variable of the problem, hence, it convergence rate and accuracy will increase at least one order. This improves the 

fracture approximation since the strain is the main variable is used for most (or all) material models to compute the 

damage (fracture) field. 

Therefore, the strong problem that is addressed in this work is stated as: Find the strain and displacement field such 

that 

 

 

 

 

 

 

Where the dynamic term have been dropped for shortness (a standard stable time integration is used for the final space-

discretized form). 

 

Classical space discretization 

The standard Galerkin continuous weak form of the previous strong problem may be written as: Find the strain and 

displacement field such that 

 
 
 
 
 
 
For all functions that belongs to the proper functional spaces (functions which the right continuity over the domain to 

ensure the existence of the integrals). Is widely known that an Inf-Sup compatibility condition (see [1] and references 

therein) is required to ensure the existence and stability of the above problem, which forbid the use of standard equal 



 

 

interpolation for both fields: displacements and strains. Hence, if low order standard elements (i.e. linear or bi-linear 

cheap elements) are used, the final discrete approximation is unstable, and only high order sophisticated non-equal 

interpolations can be used. To overcome such a very expensive computational approaches, sub-grid scale stabilization 

is used in this work as is exposed below. 

 

Sub-grid Scale stabilization 

The basic idea behind any sub-grid scale stabilization is to enrich the standard FE spaces with functional ones that 

take into account the scales of the solution, which cannot be approximated by the FE computational grid. Following 

this idea, the test and variable functions may be extended as follows: 

 
 
 
 
 
 
 
 
After introducing equations 10-13 into the weak form given by equations 8 and 9, the following variational formulation 

is obtained: 

   

 

 

 

 

 

 

It can be noticed that expressions 16 and 17 are not anything else but projections of the standard FE residuals onto the 

sub-scales (sub-grid) spaces, which cannot be resolved by the FE mesh. Now, the problem is how to calculate these 

projections. By using an approximate Fourier analysis of the problem (see [1, 5] for details), it can be shown that: 
 
 
 
 
 
 
The way the projection is taken will end up in different sub-grid methods. For the ASGS (Algebraic Sub-Grid Scale) 

approach, the standard FE term is taken as the projection (identity or Galerkin least-square projection). However, even 

though the final ASGS weak form is consistent at continuous level, the discrete one is not in a strictly manner. For 

that reason, in this work the OSS (Orthogonal Sub-Grid Scale) method is used, which enforces consistency not only 

at continuous level but also at discrete one: Whatever term is added at the standard discrete form, is also subtracted as 

is shown below.  

The OSS approach takes the orthogonal projection of the residual (standard FE term minus its projection) to approxi-

mate the right-hand side terms of 18-19. Hence, the final OSS variational form that was implemented in this work 

may be written as: 

It easily noticed that 

the previous form is 

consistent at dis-

crete level since 



 

 

every term that is added to the standard FE formulation, is subtracted as its projection. Essentially, each additional 

non-Galerkin term is also subtracted by using a different approximation (its projection). Such a procedure has been 

widely used in the CFD (Computational Fluid Dynamics) community to stabilized incompressible flow formulations, 

where it is called the 4th order damping term (see ref [6] for details). The expressions for the stabilization parameters 

given by (22), have been chosen according to the optimal convergence results obtained for equal interpolation in [1-

3, 5]. 

 

Numerical Benchmark 

As follows, the previous formulation is tested with the Cook Membrane benchmark which is shown in Figure 1. 

 

 

 
                                                                  
 
 
 
 
 
 
 
 
 
 
 
 
                                                       

Figure 1. Cook Membrane Geometry. 

 
It is well known that the irreducible formulation locks for quasi-incompressible elastic cases (Poisson ratio close to 

0.5). Hence, in this work a Poisson ratio of 0.4999 is used to test the presented formulation. The material Young 

Modulus is taken as 200 GPa, and its density as 104 Kg/m3. Both stability constants (see Eq. 22) Cε and Cu are taken 

as 1.0. 

Figure 2 compares the vertical displacement of point A (see Figure 1) obtained by the OSS stabilized element (red 

curve), the widely use hourglass stabilized element of Flanagan and Belytschko [7] (green curve), and the irreducible 

standard FE formulation (blue curve). 

 

         
Figure 2. Vertical displacement of point A using the OSS strain/displacement formulation (red), the irreducible for-

mulation discretized with the Flanagan Belytschko one point integrated element with hourglass viscosity (green), 

and the standard irreducible FE formulation (blue). 



 

 

It is well known by the CSD (Computational Solid Dynamic) community that the Flanagan/Belytschko (FB) element 

does not show locking for quasi-incompressible applications (i.e. isochoric plasticity). Hence, based on the results 

presented above (Fig. 2), the OSS stabilized formulation is also suitable for such applications. Essentially, it produces 

very similar displacement than the FB element. On the contrary, the standard irreducible formulation totally locks for 

this benchmark (see Fig.2). It produces a maximum vertical displacement which is half of the expected one. 

 

 

 
Figure 3. Mechanical pressure (average main stress field). Left: FB element. Right: OSS formulation. 



 

 

It can be argued that while the FB element needs only one integration point per element, the OSS formulation (Eq. 

20-22) needs to be fully integrated (eight integration points for hexahedral elements), which makes it much more 

expensive from a computationally point of view. This argument is not valid if tetrahedral elements are used, since, it 

can be deduced from forms (20) and (21), the OSS formulation only needs one point integration rule for linear inter-

polations. However, for hexahedral elements (tri-linear interpolation), the additional cost pays out since the OSS for-

mulation produces more stable and free of spurious oscillations stress (and strain) fields than the FB element, as it is 

shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Principal stress (left) and strain evolution (right) for the OSS strain/displacement formulation. 

 

Figure 3 shows the mechanical pressure (average main stress) for the OSS formulation and the FB element. It can be 

observed that while this variable is stable for every step of the OSS approach, the FB element shows a chess board 

mode instability in some time steps. Such spurious oscillations destroy the computation of the damage field, hence, 

the accuracy of the fracture computation. Finally, Figure 4 shows the evolution of the principal stress and strain for 



 

 

the OSS formulation. It can be observed that both variables are continuous and stable for every time step, which ensure 

a good approximation of the damage field. 

 

Experimental Test Application 

In this section, a real test simulation which experimental data is presented. Figure 5 shows the test configuration. The 

test structure consisted of a disposable burst room composed of two culvert sections. A reuseable thick reinforced 

concrete closure panel with a doorway is placed at the far end to provide confinement and controlled venting of the 

structure. The permanment portion of the test structure is designed to study the failure of the first wall, propagation of 

blast and debris into the second bay, and progressive loading and failure of the second wall. The facility incorporates 

two replaceable test walls, loaded with load beams to ensure full enclosure during the test. The replaceable test walls 

permit us to quickly reconstruct the test facility and study the effect of wall geometry, reinforcing, and material 

strength as well as weapon size and standoff. 

 

 
 

Figure 5. Test configuration. 

 

 
Figure 6. Test instrumentation. 

 

Figure 6 shows the instrumentation for the test. Instrumentation in the burst room consisted of four pressure gages on 

the ceiling of the culvert sections. Six additional pressure gages were placed in Bay 2, four on the ceiling and two on 

the front face of the second test wall. Accelerometers, three on both test walls, provided a measure of the structural 
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response of the two walls. Two camera ports in Bay 2 provided high speed video of the failure and debris ejection off 

of wall 1. Two exterior cameras provided high speed video of the wall 2 response. 

 

 

 
Figure 7. CSD modeling details of the test facility, explosive case, and test walls. 

 

Figure 7 shows some of the CSD modeling details of the facility, test walls, and explosive case. The modeled facility 

included two rooms, the detonation room and bay room. In the initial simulation, each room’s ceiling, floor and cul-

verts were modeled as non-responding. Only the two test walls were allowed to respond. The test walls were modeled 

with 0.5 inch solid elements with beams used to model the rebar.  

The weapon case was modeled with 0.1 inch size linear elements. The Tritonal and C4 booster explosives were both 

modeled with a JWL equation-of-state. Past attempts to model Tritonal using simple JWL equation-of-state were not 

successful. However, the latest chemical kinetics models incorporated within FEFLO (CFD solver) resulted in blast 

wave evolution that was in excellent agreement with the data, as will be shown later.  

 

(a)  (b)                                                                          
Figure 8. Post-test photographs of test walls. a. Internal view of test wall 1; b. External view of test wall 2. 

 

Figure 8 shows the damage to the two test walls post-test. Both walls were catastrophically destroyed. A snapshot 

from high speed video (Fig 9a) shows that test wall 1 initially breached over the middle third of the wall, propagating 

blast pressure and high speed debris into the second bay. The coupled simulation, performed with the computational 

code FEMAP (which couples the flow solver FEFLO and the CSD solver ASICSD), replicates this initial breach as 

shown in Fig 9b. The simulation also agreed reasonably well on the maximum debris velocity measured from the 

video. Later time pressures were sufficient to fail and remove both the wing walls. Note the large chunks of debris 

that remained entangled in the rebar and on the floor over the front third of bay 2. The combined pressure and debris 

loading on test wall 2 was sufficient to fail test wall 2 which sheared at the top and rotated downward, as shown in 

Fig 8b. 



 

 

(a)                (b)  

Figure 9. Initial breach of test wall 1: a. High speed video clip; b. FEMAP simulation. 

 

 
Figure 10. Detonation, case fragmentation and wall breach. Shown are the fluid velocity contours, and the resulting 

structural pressure and velocity at 3 times during detonation and wall breach. 

 

Figure 10 shows a sequence of snapshots taken at three times during the detonation process: at the middle of the 

detonation, at the end and sometime afterwards. In each panel shown are the velocity contours on the plane of sym-

metry (left), the pressure on the structure (center) and the velocity of all structural elements (right). The figures exhibit: 

1) the top, point detonation initiation and propagation down the explosive; 2) the case expansion and break-up (initial 



 

 

case failure is at the weld between the base plate and the cylindrical charge, failing due to shear); 3) detonation prod-

ucts escape through the expanding cracks (notice that due to the large pressure ratio, the detonation products achieve 

supersonic speeds upon expansion, cooling down and thus strongly affecting the later combustion of any aluminized 

particles or other additives); 4) the high speed cylindrical fragment expansion and the low velocity base and tail plates 

fragments; and 5) wall breach. While a significant pressure load is imposed on the wall, the initial breach resulted 

from fragment loading, which was significantly higher than pressure loading at this time. 

 

 
Figure 11. Test walls response at 5.0ms, 10.0ms and 20.0ms. Shown are the CSD surfaces, including secondary de-

bris and fragments, CSD velocity and test wall damage contours. 

 

Figure 11 shows test walls response at 5.0, 10.0 and 20.0 ms. Shown at each time are the structural surface, including 

the secondary debris and the breaking rebars, the structural component velocity, and the damage contour plots (where 

zero is non-damaged, and 2.0 is totally-damaged., i.e., the deviatoric stresses are zero, and the element can only with-

stand compression, but not tension or shear). The blast wave propagating through the breach has arrived to test wall 2 

well before the slower-propagating secondary debris. Still, the air blast pressure loading was not sufficient to fail the 

wall: a large debris loading from the first wall failure contributed substantially to the failure of the second wall as 

observed in the test. 

Comparison of pressure time histories at three locations is shown in Fig. 12. Figure 12 left shows comparison for a 

station in the blast room, while Fig 12 center and Fig 12 right show comparisons for stations in the bay area. In the 

blast room, the results show excellent agreement between the measured and predicted data in terms of shock arrival 

time, the ceiling-reflected shock and side-wall reflected shock. Until 10ms, all shock reverberation features are cap-

tured correctly. However, at 10ms the simulations predict the arrival of the reflected shock from the back side of the 



 

 

room, opposite test wall 1, while the test results do not show this reflection. Similarly, the predictions in the bay room 

track the experimental data nicely until 11ms, and then deviate drastically. 

    
Figure 12. Comparison of measured and predicted pressure time histories at three locations, one in the detonation 

room and two in the Bay room. 

 

A careful analysis of post-test results helped explain this phenomenon. The culvert post-test shots (Fig 13) indicate 

that weapon fragment impacts on the side culverts resulted in complete stripping of the concrete cover to the first rebar 

cage. We estimated the amount of concrete stripped at several hundred kilograms. This clearly indicated that modeling 

of the culvert as non-responding was not appropriate. Hence, we repeated the simulation this time modeling the culvert 

as any other reinforced concrete wall, including concrete failure and pulverization in response to the high-speed 

weapon fragments impact.  

 

 
Figure 13. Test results show the significantly damaged east and west culverts. 

 

Figure 14 shows the CSD surfaces and damage contours at 1.5 ms and 3.0 ms. At this early time the breach damage 

to the test is identical to the breach damaged obtained in the no-dust previous simulation. In addition, significant 

damage is now observed along the culvert side walls, due to high-speed fragment impact. The model predicted strip-

ping of the concrete to the first layer of rebars, in agreement with the observed test results. 

Figure 15 show the time evolution of dust mass injection into the room and the injection velocity. Most dust is injected 

within the first 6.0 ms. Since the detonation room is fairly long, there is a time span between the fragment impact near 

the test wall to fragment impact on the culvert at the far end of the room. The fragments impact the wall at velocities 

of about 1.0 km/sec, and the dust is blown off the wall with initial velocities of 300 to 600 m/s. The dust velocity 

decays rapidly after ejection, as the dust blown off the wall encounters the high pressure blast wave, which at these 

ranges, lags the case fragments.  

Finally, we compare predicted and measured pressure and impulse time histories at several locations, as well as meas-

ured and predicted walls response (acceleration and deflection) for the two test walls, obtained when incorporating 

dust production from the culverts in the simulation. Figure 16a shows a comparison for stations 1 and 2 (symmetric) 

in the detonation room. The experimental data is in black, the previous no-dust prediction is in green, and the new 

predicted results modeling dust is in red. The difference between the predictions is strikingly evident at about 10ms, 

when the reflected shock from the room far end attempts to propagate towards the test walls. The reflected wave now 

encounters several hundred kilograms of fine dust. The reflected wave is now damped (i.e., significant energy loss) 



 

 

due to: 1) thermal (internal) energy loss as the dust particles internal energy increases due to heating by the hot deto-

nation products; and 2) drag damping (kinetic energy loss), as the blast wave accelerates the slower particles. 

 
Figure 14. CSD surfaces and damage contours at 1.5 ms and 3.0 ms. 

 

 

 
Figure 15. Temporal evolution of dust mass injection and dust velocity off the culvert walls. 

 

The corrected description of the controlling physical processes (i.e., dust losses) yields a more accurate blast wave 

energy damping, as shown in Fig 16a for a station in the blast room. Similar results were obtained for two stations in 

the bay room: station 8 located on the ceiling, and station 10, located on test wall 2 (Figs 16b and 16c, respectively).  

Finally, the more accurate pressure environment prediction resulted in a more accurate structural response prediction. 

Figures 17a and 17b show comparisons of measured and predicted accelerations and displacements for test walls 1 

and 2, respectively. Good agreement is demonstrated both in terms of acceleration and displacement. 



 

 

 
Figure 16. Comparison of measured and predicted pressure and impulse values in A. Burst room; B. On ceiling; and 

C. Bay 2 on Test Wall 2. 

 

 

 
Figure 17. Comparison of measured and predicted wall motions. A. Test wall 1; b. Test wall 2. 

 
 

Conclusions 

A stabilized mixed strain/displacement (strain rate/velocity) OSS formulation has been presented. The main ad-

vantages is that equal order interpolation for the strain and displacement can be accommodated, which is highly de-

sirable from a computational point of view. In addition, the formulation allows the use of low order FE interpolations 

(linear and bi-linear elements), which are computationally cheap. 

It was shown through the numerical benchmark, that he introduced OSS formulation is more stable and equally accu-

rate than the widely use Flanagan Belytschko hourglass stabilized element, which has been widely used and tested in 

the CSD community. 

From a theoretical point of view, the formulation shows one order of convergence higher than the standard displace-

ment formulations. This hypothesis was demonstrated in a computational manner, since the irreducible formulation 

locks (present non-physical smaller displacements) for incompressible benchmark cases. In addition, even though the 

hourglass stabilized irreducible formulation (FB element) does not lock, it presents spurious stress oscillations at some 

time steps, which most probably will destroy the damage and fracture computation in real life applications. 

Finally, a coupled fluid-structure test with abundant experimental data was simulated to validate the presented formu-

lation. The numerical and experimental results agreed very well after taking into account the energy loses due to dust 

production. 
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