

Munitions Safety Information Analysis Center

Supporting Member Nations in the Enhancement of their Munitions Life Cycle Safety

EXPERIMENTAL AND THEORETICAL BASIS OF CURRENT NATO STANDARDS FOR SAFE STORAGE OF AMMUNITION AND EXPLOSIVES

International Explosives Safety Symposium & Exposition, San Diego, 6-9 August 2018

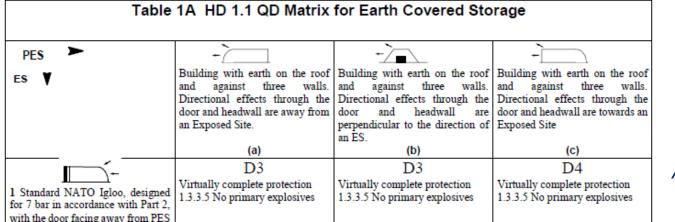
Martijn van der Voort

TSO Munitions Safety, Storage and Transport +32.(0)2.707.54.26

m.vandervoort@msiac.nato.int

Eric Deschambault, Johan de Roos, Tom Taylor

- Introduction
- Munitions response
- Quantity Distances (QD) per explosion effect
 - Blast
 - Debris
 - Fragments
- Conclusions & Recommendations
- Way forward
 - MSIAC support to CNAD AC/326 SGC
 - MSIAC AASTP-1 and 5 lecture series

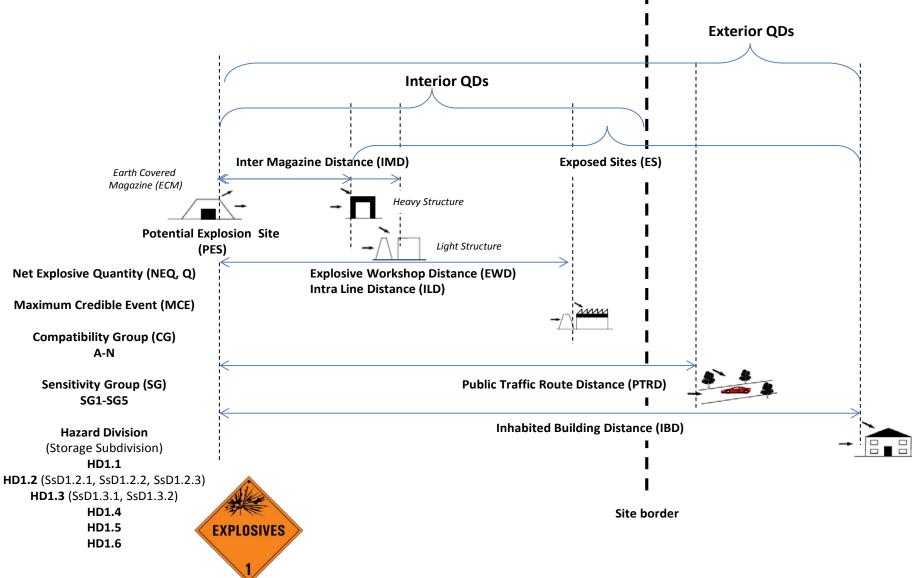

Introduction

NATO Standards for safe storage of ammunition and explosives

- Developed within NATO CNAD AC/326 SGC
- Storage in the home country: AASTP-1
- Storage on deployed missions: AASTP-5

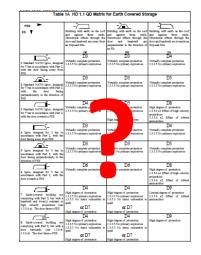
Quantity Distances (QD)

- Provide an acceptable protection level to Exposed Sites (ES)
- Due to accidental explosion of Potential Explosion Site (PES)
- Developed by AC/326 experts over many decades
- Based on analysis of a large number of tests- and accident data



AASTP-1 QD table

Introduction



Introduction

- Issues
 - Basis of QDs not easy to understand for new people in the field
 - Not clear which explosion effects determine QDs
 - Comprehensive and transparent overview is missing

• MSIAC project: "Experimental and theoretical basis of QDs"

- Collect relevant references with experimental work and analysis
- Explain the science of explosion effects at the right level of detail
- Identify knowledge gaps and advice on areas for further development

- Hazard Division categorises munitions response and relevant explosion effects
 - Mass detonation (blast, debris, fragments)
 - Progressive event (fragments and lobbed ammunition)
 - Burn (thermal effects)
- QD is determined by most dominant effect:
 - Note: this may also depend on direction!

 $QD = \max(QD_{blast}, QD_{debris}, QD_{frag}, QD_{therm})$

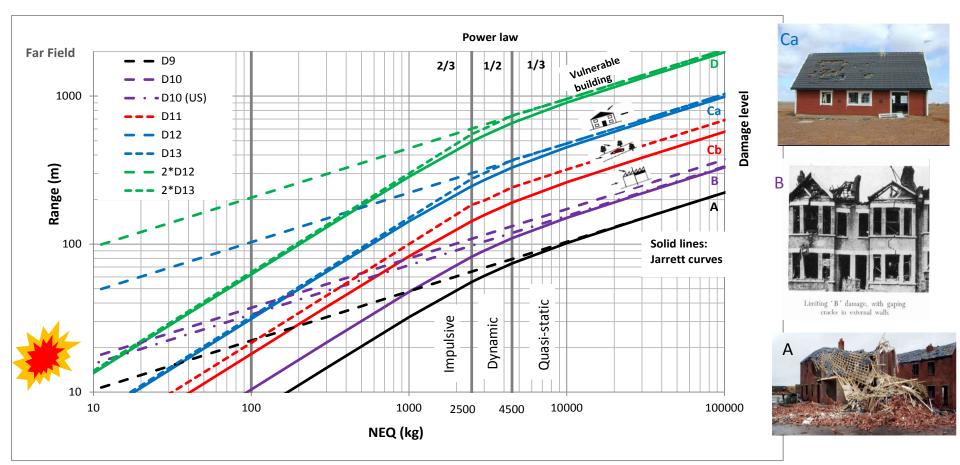
- Influence of protection measures
 - PES and ES barricades stop low angle fragments and debris
 - Protective ES roofs stop high angle fragments and debris
 - Reduced blast for side and rear of ECMs

Munitions response

Munitions Response	Detonation MCE (instantaneous)	Progressive event, popcorn (duration)	Burn (duration)				
Explosion effects	Blast, Debris, Fragments	Fragments, Lobbed ammo	Thermal				
HD1.1	Total NEQ	-	_				
SsD1.2.1 (>0.136 kg/round)	50 kg or 3 packages, etc	Total NEQ	-				
SsD1.2.2 (<0.136 kg/round)	AASTP-1: can be neglected	Total NEQ					

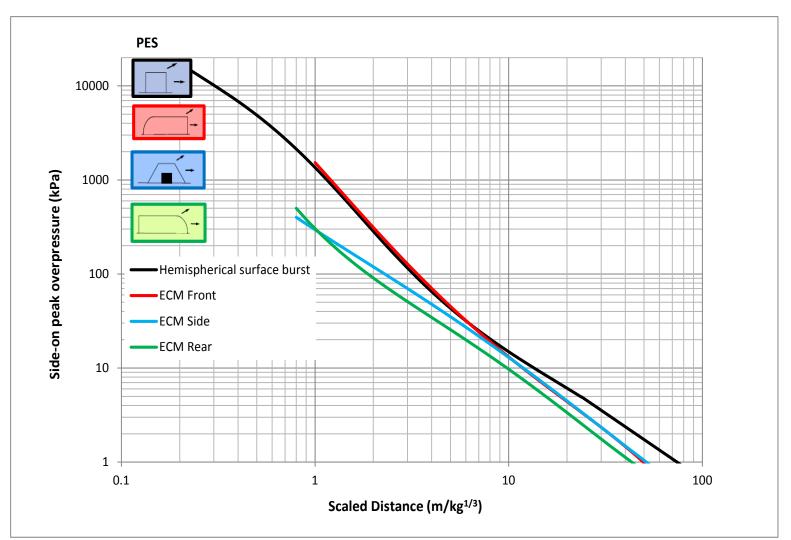
Munitions response

Munitions Response	Detonation MCE (instantaneous)	Progressive event, popcorn (duration)	Burn (duration)		
Explosion effect	Blast, Debris, Fragments	Fragments, Lobbed ammo	Thermal		
SsD1.2.3 (>0.136 kg/round)	Single article Order State AASTP-1: only blast and frag	_	Total NEQ		
SsD1.2.3 (<0.136 kg/round)	AASTP-1: can be neglected	-	Total NEQ		
HD1.3 (1.3.1 & 1.3.2)	AASTP-1: Behaviour of propellants under confinement not considered!	-	Total NEQ		

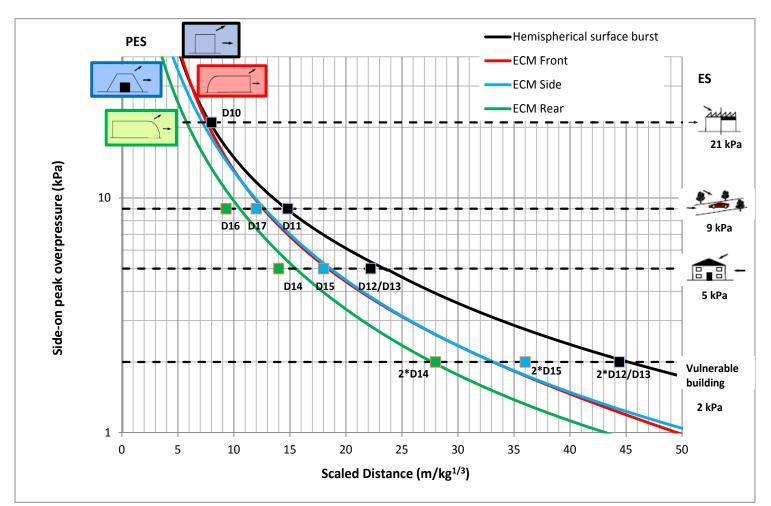

Munitions response

Munitions Response	Detonation MCE (instantaneous)	Progressive event, popcorn (duration)	Burn (duration)				
Explosion effect	Blast, Debris, Fragments	Fragments, Lobbed ammo	Thermal				
HD1.4	-	-	-				
HD1.5	Total NEQ	-	-				
HD1.6	Single article ••••••••••••••••••••••••••••••••••••	-	Total NEQ				

Blast QDs (AASTP-1) related to damage WWII (Jarrett)

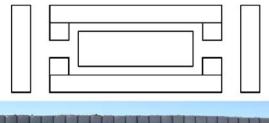

- Mostly based on peak overpressure (1/3 power law)
- Dependency on impulse (2/3 power law) not consistently addressed

Blast wave prediction model (US TP17, 2016)


• For hemispherical surface burst, ECM front, side and rear

Comparison blast wave prediction model with QD

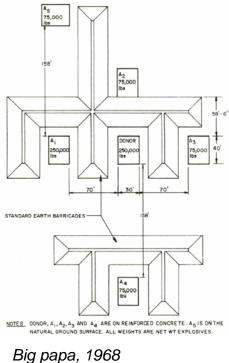
- Model predictions consistent with most blast QDs
- Blast attenuation from the front of an ECM is neglected


- Blast FDs for structures on deployed missions (AASTP-5)
- E.g. barricaded tents and light containers

• Prevention of (lethal) blast damage (FD7)

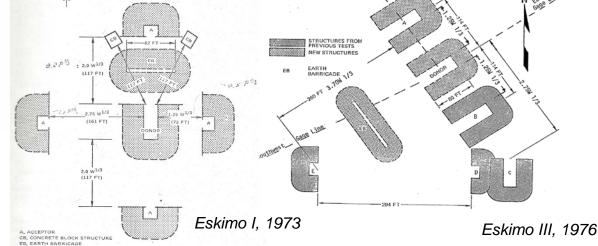
E.g. hardened and semi-hardened structures

- Blast ingress only remaining effect
- Prevention of lung injury (FD4 and FD5)
 - Ear drum rupture however still possible!



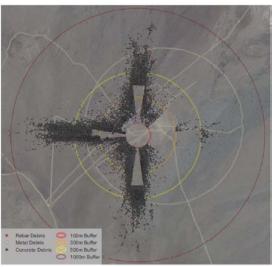
Inter Magazine Distances (IMD)

- Aimed to prevent prompt propagation, based on historical test data
- IMD follow 1/3 power law, besides blast also crater, debris, ...
- Rationale for some of the IMDs is currently unavailable


5 tonnes trial, 2002

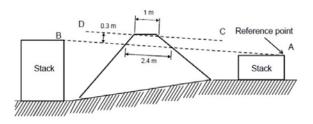
Modular Ammunition Magazine, 2006

14


Debris

QDs dominated by debris hazard

- Important for small quantities of explosives (SQQD): 1<NEQ<500kg
- QDs for brick and RC are based on the wall-normal direction
- The debris hazard in other directions is generally much smaller


Kasun, 2009

IBD definition

- Debris density = $1/56 \text{ m}^2$, hit probability about 1%
- Hazardous debris/fragment 79 J.

Effectiveness of barricades

• For IMD but not for IBD

Sci Pan, 2015

10

1000

IBD (m)

100

10

1

Debris

SQ15 (concrete/brick > 20 m3)

SQ14 (concrete/brick < 20 m3)

100000

Kasun (8 m3)

10000

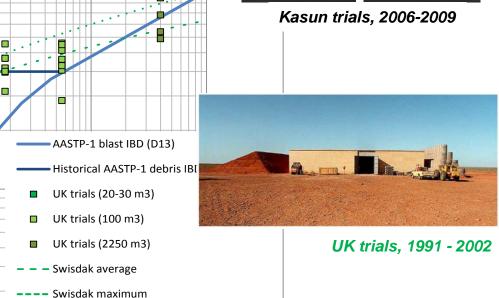
IBD for brick and RC structures

Traditionally 400 m minimum

H

100

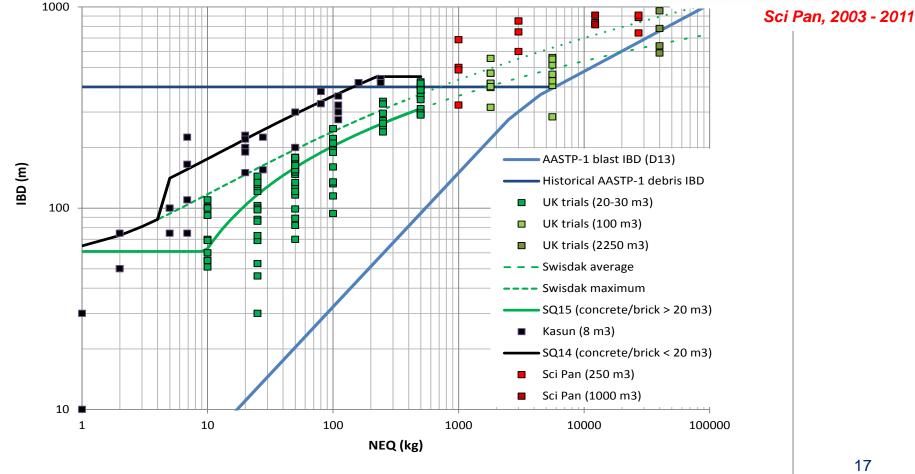
NEQ (kg)


Kasun trials representative for Volume < 20 m³ •

1000

UK trials representative for Volume > 20 m³

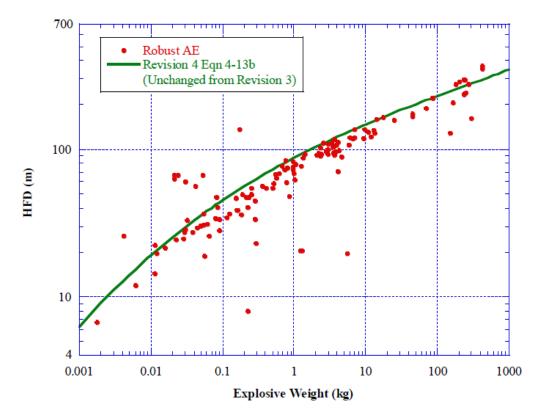
16



Debris

- IBD for brick and RC structures for large NEQ
 - Inclusion of Sci Pan data (large NEQ) •
 - IBD is much larger than 400 m! ullet

17



Fragments

QDs dominated by fragments

- Important for open stacks and light structures (ISO containers)
- Unbarricaded situations
 - Hazardous Fragment Distance (US TP16) (SQ17 and FD9)

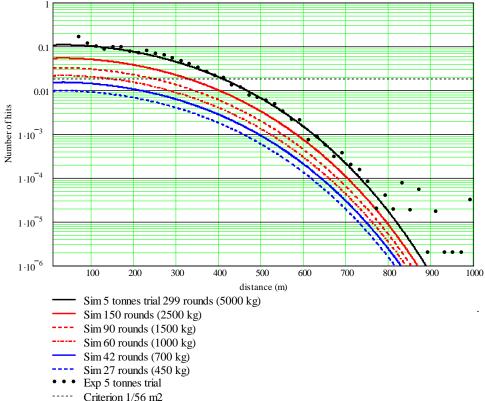
Fragments

Barricaded situations

• QD based on upward launched fragments (FD8)

Available online at www.sciencedirect.com

International Journal of Impact Engineering 35 (2008) 109-118


A universal throw model and its applications

M.M. van der Voort^{a,*}, J.C.A.M. van Doormaal^a, E.K. Verolme^a, J. Weerheijn

^aTNO Defence, Security and Safety, P.O. Box 45, 2280 AA Rijswijk, The Netherlands ^bFaculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands

Received 28 April 2006; received in revised form 7 November 2006; accepted 8 January 2007 Available online 9 February 2007

Conclusions

AASTP-1 QDs:

- Blast QDs consistent with state-of-the-art blast wave prediction
- Proposed debris/fragment QDs have solid experimental basis

• AASTP-1 conservative assumptions:

- For HD1.1 a mass detonation of all ammunition is assumed
- Blast QDs are mostly based on peak overpressure, while the dependency on impulse is not consistently addressed
- Blast attenuation from the front of an ECM is neglected
- Debris QDs are based on the wall-normal direction

• AASTP-5 conservative assumptions:

- All HD are aggregated as HD1.1
- Benefits of any HD other than HD1.1 cannot be realised

- AASTP-1 potentially unsafe situations:
 - Brick buildings at the Explosive Workshop Distance are likely to collapse, with injury and lethality as a consequence
 - In trials with large NEQ, the debris IBD exceeds 400 m
 - The door of a PES is not taken into account in most cases
- AASTP-1 knowledge gaps:
 - Rationale for some of the IMDs is currently unavailable
 - Lack of information on debris IBD from the rear and side of ECMs

Consistency

- Availability of QDs for the same protection levels
- Consistency between HD1.1 SQQD and MCE for other HD
- Development towards physics-based QDs
 - More advanced debris IBD models
 - Take into account building properties (dimensions, thickness,...)
 - Take into account reduced debris effects in off-normal directions

Development towards tools

- As an alternative to tables
- Reduction of human error, rounding and interpolation issues
- Cooperation with expert groups
 - Testing and modeling, e.g. the Klotz Group

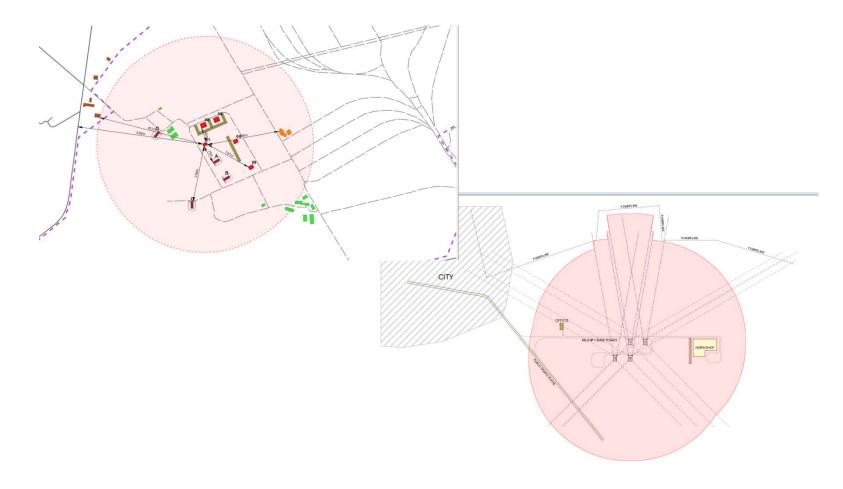
Supporting Munitions Safety

- MSIAC conclusions and recommendations have triggered revised QD table format in AASTP-1
 - Combining all Hazard Divisions in one table
 - Treating all explosions effects separately
 - Enhances overall consistency and reduction of amount of tables
 - Ongoing work to update the required QD formulas

PES → E S ¥	EFFECT	Building with earth on the roof and against three walls. Directional effects through the door and headwall are away from an Exposed Site.	Building with earth on the roof and against three walls. Directional effects through the door and headwall are perpendicular to the direction of on Sc	Building with earth on the roof and against three walls. Directional effects through the door and headwall are towards an Exposed Site	full form 1. Selec 2. Use H 3. Use H	See introduction for full instructions and calculation tables for full formula. 1. Select correct PES/ES interaction. 2. Use HD/SsD table to determine applicable calculations 3. Use HD/SsD table to determine quantity, either NEQ or MCI 4. Use associated formula for min Distance or max Quantity. HD / SsD					ns or MCE
	(a)	direction of an ES. (b)	(c)	1.1	1.2.1	1.2.2	1.2.3	1.3.1	1.3.2	1.6	
4 Igloo designed for 3 bar in accordance with Part 2, with the door facing away from PES	BLAST				NEQ	MCE	MCE	MCE			MCE
	DEBRIS & FRAG				NEQ	MCE	MCE	MCE			MCE
	PROG' 1.2.1					NEQ					
	PROG' 1.2.2						NEQ				
	THERMAL 1.3.1								NEQ		
	THERMAL 1.3.2							NEQ		NEQ	NEQ

UK IWP 2018, Matt Wingrave

- One week certified course on NATO standards AASTP-1 and 5
- Developed by MSIAC and contractors
- Typically 5-6 courses per year, 20 students per class


- For ESOs and anyone involved in safe storage of ammunition
- For MSIAC member nations and other (NATO) nations (at a cost)
- Instructors include subject matter experts:
 - Mr. Johan de Roos (ex BE MoD)
 - Mr. Eric Deschambault (ex US DDESB)
 - Mr. Matt Wingrave (UK DOSG)

- Theoretical presentations and hands-on exercises
- Course material available through MSIAC website

