Always a Step Ahead **ARDEC** ARMAMENTS

"Intended Use" and Hazard **Classification Testing**

Mr. Erik Wrobel **US Army RDECOM-ARDEC** Picatinny Arsenal, NJ

Act like someone's life depends on what we do.

DISTRIBUTION A. Approved for public release: distribution unlimited.

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT & ENGINEERING CENTER

- Hazard classification tests are designed to accommodate all energetic materials
- A few of the TB 700-2/UN tests have conditional requirements based on the "intended use" of the energetic material
 - Function via detonation or deflagration
- This can lead to an underestimation of the hazards of deflagrating materials
 - Gun propellant case study
- Discussion of critical diameter and recommendations

A CASE STUDY, PROP X

- Gun propellant program requested supportability letter from the US Army Energetic Materials Qualification Board (EMQB)
- Double-base propellant, composition and grain geometry very similar to existing materials
 - Planned to qualify via analogy
- EMQB requested completion of several tests to justify analogy
 - Small-scale sensitivity tests (impact/friction/ESD/DSC)
 - Shock sensitivity (cap/gap)
 - Critical diameter

CASE STUDY DATA

	Impact	Friction	Burn	Cap Test	NOL Gap	Critical	
Sample	50% (cm)	TIL	Time (s)	Result	Test (cards)	Diameter (in.)	HD
		0/10 at					
PROP X	31.6	192 N	3-4 s	Positive	251	0.250-0.375	1.3C
Booster							
Grade		0/10 at					
HE	35.5-42.1	360 N	~70 s¹	Mixed ²	~220	~0.100 ³	1.1D
IM Main		0/10 at					
Fill HE	> 100 cm	360 N	>90 s¹	Negative	100-150	0.850-0.875 ³	1.1D

• Burn test conducted per the legacy 125 gram standard

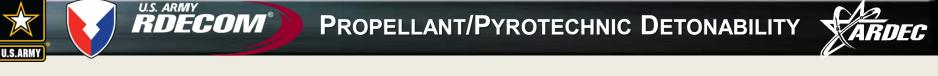
U.S. ARMY RDECOM®

• One lot of the booster grade material passed, the next lot failed (borderline)

• Critical diameter tests on the HE formulations were conducted on pressed/cast samples, not loose material

PROP X PATH FORWARD

- Preliminary testing indicated that the propellant had similar shock sensitivity and critical diameter to 90%+ nitramine HE formulations
- Full qualification of PROP X was required
- Received as a HD 1.3C material, but testing showed credible Mass Explosion and Mass Fire hazards
- Led to an internal review of TB 700-2 and UN test standards


- Relevant test documents when classifying the hazards of packaged energetic materials:
 - TB 700-2, Joint Technical Bulletin, Department of Defense Ammunition and Explosives Hazard Classification Procedures (DoD only)
 - Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria (UN) (International use)
- Series 6 Tests
 - Single Package Test (a)
 - Stack Test or Sympathetic Reaction Test (b)
 - External Fire Test (c)

U.S. ARMY RDECOM®

"INTENDED TO"

- A packaged substance *intended to function by detonation* should be initiated with the standard detonator
 - NOTE: Some substances may require a higher strength detonator (TB 700-2 only)
- A packaged substance *intended to function by deflagration* must first be tested with the standard detonator
 - If it does not detonate, then the subsequent trial must be conducted with an igniter...
- Exception for solid rocket motor propellants (TB 700-2 only)
 - Additional scrutiny on test plans and initiation methods

- In effectively all cases, propellants and pyrotechnics are detonable substances
- Modern propellants often have similar constituents as high explosives
 - Competing requirements for insensitivity and performance for HE, propellants, and pyrotechnics
- To characterize the safety of these materials, need to know two initiation properties:
 - Critical diameter (monolithic or packed bed)
 - Shock sensitivity (amplitude and duration for detonation)
- Small changes in formulation can result in dramatic shifts in initiation and detonative properties

CRITICAL DIAMETER

- The critical diameter (or failure diameter) is the minimum diameter at which an explosive substance can maintain a detonation front
 - Diameter is usually evaluated since cylinders are the most common munition geometry
- Generally small (0-0.250") for booster grade and legacy high explosives
- Tailorable for Insensitive Munitions HE (>4" in some cases)

BED CRITICAL DIAMETER

- For granular propellants, the packed bed of material can be evaluated for critical diameter
- Grain geometry is a major factor (effective packing density)
- Propellants/pyrotechnics results can vary widely depending on composition and grain structure (very small to 5+" critical diameters)
- During qualification of HE, critical diameter must be known for both safety and performance purposes
 - Propellant/pyrotechnic data is less available since detonation is not intended

- Gap testing is typically used to evaluate the shock sensitivity of an explosive substance
 - Vary the shock input from a standard donor charge by using plastic spacers (or other materials)
 - Determine the shock requirements for the material to detonate
 - Large Scale Gap Test (1.44") or larger variants
- Existing hazard classification shock sensitivity tests are not iterative
 - UN Series 2 test offers only one diameter (1.44") and two shock inputs (20.7 kbar or ~220+ kbar)
- Grain packing can pose challenges for gap test configurations

- Many propellants and pyrotechnics will not detonate if initiated with the UN/TB standard detonator (~0.250-0.300" diameter)
 - Very likely misfire/dud event that's unsafe for operators
- Most transportation/storage containers for propellants and pyrotechnics are above the critical diameter of the materials
 - These materials could be detonated given sufficient input
- Existing standards could mask detonative hazards due to under-testing with the standard detonator

RECOMMENDATIONS

- Conduct Series 6 tests with initiation schemes targeted to evaluate both the detonation and deflagration hazards
 - Detonation via standard detonator or higher strength initiation, as required
 - Deflagration via squib as prescribed
- Unconfined critical diameter testing would help ensure proper test design and yield important safety data for hazard classifiers
 - Part of the required qualification matrix for Army EMQB for propellants and pyrotechnics
 - <u>NOT</u> mentioned in UN Orange Book
 - TB 700-2 only references CD for solid rocket motor propellants

CONCLUSIONS

- Accidental initiation of explosive substances during processing, transportation, or storage often occurs via a different initiation mechanism than the intended function
- Propellant and pyrotechnic critical diameter and shock sensitivity is not well-characterized in many cases
- Hazard classification testing should be material-agnostic
 - No "intended to function via..." statements
- Modifications to the test standards would result in better qualification of the detonation and deflagration hazards of propellant and pyrotechnic materials

Questions?

7 AUGUST 2018

DISTRIBUTION A: Approved for public release. Distribution unlimited. UNCLASSIFIED