

The ARDEC Gap Test

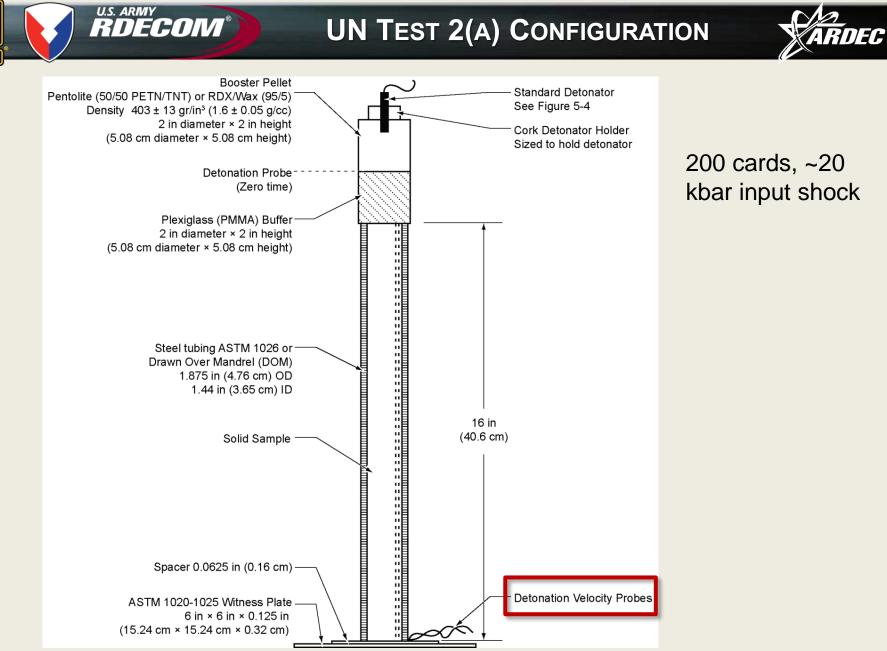
Mr. Erik Wrobel **US Army RDECOM-ARDEC** Picatinny Arsenal, NJ

UNPARALLELED ENT

Act like someone's life depends on what we do.

DISTRIBUTION A. Approved for public release: distribution unlimited.

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT & ENGINEERING CENTER


UNCLASSIFIED

- ARDEC used the UN 2(a) iii Gap Test as one of the differentiators for HD 1.1 vs. 1.3 IHCs for propellants
- Changes to the TB 700-2 shock sensitivity tests resulted in conflicting IHC/FHC assignments for certain propellants
- Test series developed and executed, briefed the DDESB, and performed additional testing
- Development of the ARDEC Gap Test as a replacement to UN Test 2(a) for small-grain propellants
- Limitations/Future Work

DISTRIBUTION A: Approved for public release. Distribution unlimited. UNCLASSIFIED

U.S.ARMY

UN GAP TEST REVISION

- The UN Gap Test revision removed the resistive wire detonation velocity probe
 - Difficult to procure components, dated method of measurement
- Same test fixture, same donor material, same attenuation
- Legacy test had 3 assessment criteria
 - · Holed witness plate
 - Fragmented tube
 - Stable shock wave propagation
 - If 2 of 3 criteria were met, material given positive (+) result and was a candidate for a HD 1.1 IHC assignment (ARDEC)
- Current test has 2 assessment criteria
 - Holed witness plate
 - Fragmented tube
 - If either criterion was met, material given positive (+) result and was a candidate for a HD 1.1 IHC assignment (ARDEC)

RDECOM

UN TEST 2(A) LEGACY VS. CURRENT

Propellant	Legacy Test Result	Current Test Result		
Sample 1	<u>Positive</u>	<u>Positive</u>		
	TF, HP, No DV	TF, HP		
Samplo 2	<u>Positive</u>	<u>Positive</u>		
Sample 2	TF, HP, No DV	TF, HP		
Sample 3*	<u>Negative</u>	<u>Positive</u>		
	TF, No HP, No DV	TF, No HP		
Sample 4*	<u>Negative</u>	<u>Positive</u>		
	TF, No HP, No DV	TF, No HP		
Sample 5	<u>Positive</u>	<u>Positive</u>		
	TF, HP, No DV	TF, No HP		
Sample 6*	<u>Negative</u>	<u>Positive</u>		
	TF, No HP, No DV	TF, No HP		
Sample 7	No Data	No Data		
Sample 8	No Data	<u>Negative</u>		
		No TF, No HP		

TF = Tube Fragmented, HP = Holed Plate, DV = Detonation Velocity

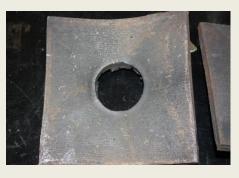
POST-TEST PHOTOGRAPHS

UN Test 2(a) Propellant Fragments (Deflagration)

Typical Detonation Fragments

UN Test 2(a) Propellant Witness Plate (holed)

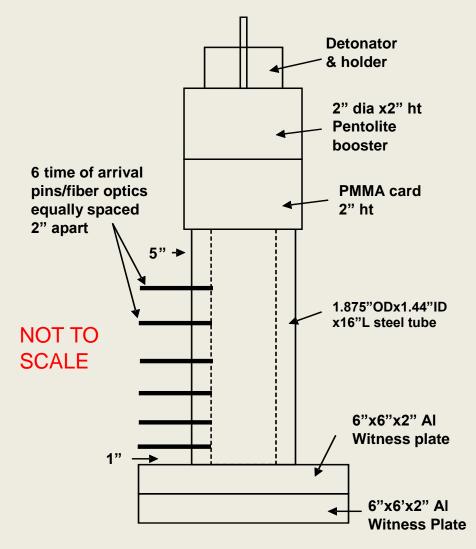
9 AUGUST 2018

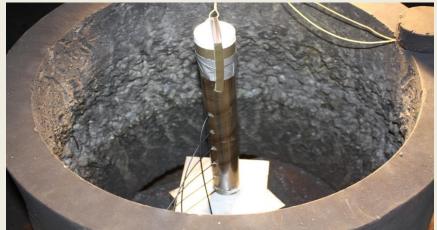


70 CARD LSGT RESULTS

• DDESB briefed with findings and the board recommended conducting 70 card NOL LSGT test series (~70 kbar input)

	70 Card LSGT	
Propellant	Results	NOL LSGT 50% Point (cards)
Sample 1	Go, Go, Go	125
Sample 2	Go, Go, Go	131.5
Sample 3	Go, Go, Go	No Data
Sample 4	Go, Go, Go	141
Sample 5	Go, Go, Go	No Data
Sample 6	Go, Go, Go	139.5
Sample 7	Go, Go, Go	No Data
Sample 8	Go, Go, Go	140.5




All propellants tested would be candidates for HD 1.1

DEVELOPMENT OF THE ARDEC GAP TEST

- Same sample tube, booster, attenuation as UN gap tests
- Optical fibers located down the length of the tube for shock velocity measurements
- Aluminum dent blocks for comparable pressure measurements

DISTRIBUTION A: Approved for public release. Distribution unlimited. UNCLASSIFIED

8

ARDEC GAP TEST METHODOLOGY

- Three tests were conducted on each sample material
 - Trial 1: Baseline test, no PMMA attenuation
 - Determines detonation velocity and dent with explosive booster in contact with sample
 - Confirms detonability of material at test geometry
 - If material did not detonate, repeat test without attenuation
 - Larger scale test required due to CD, not available in current standards
 - Trial 2: Attenuated test, 2" PMMA gap
 - Determines detonation velocity and dent with the attenuated shock
 - Trial 3: Repeat of trial 2, 2" PMMA gap

Evaluation criteria

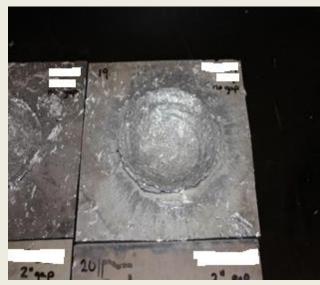
 If the dent depth from either attenuated test is greater than 50% of the baseline dent depth, OR if there is a stable shock velocity in trials 2 or 3, the test sample detonated (positive result).

U.S. ARMY RDECOM®

PROPELLANT RESULTS

Propellant	Shot #	PMMA gap (In.)	Det. Vel. (km/s)	Dent (in.)
	1	None	5.077	0.597
Sample 1	2	2	Not used	0.043
	3	2	No Velocity	0.039
	1	None	5.190	0.595
Sample 2	2	2	Not used	0.053
-	3	2	No Velocity	0.049
	1	None	5.322	0.764
Sample 3	2	2	Not used	0.024
	3	2	No Velocity	0.025
	1	None	5.364	0.746
Sample 4	2	2	Not used	0.037
	3	2	No Velocity	0.035
Sample 5	1	None	5.437	0.697
	2	2	Not used	0.053
	3	2	No Velocity	0.049
Sample 6	1	None	5.435	0.736
	2	2	Not used	0.039
	3	2	No Velocity	0.040
	1	None	5.081	0.582
Sample 7	2	2	Not used	0.002
	3	2	No Velocity	0.002
	1	None	4.899	0.581
Sample 8	2	2	Not used	0.013
	3	2 Ved for public release. Distr	No Velocity	0.018

9 AUGUST 2018


10

PROPELLANT DISCUSSION

- All propellant samples were detonable in the baseline configuration
 - 4.9 to 5.5 km/s detonation velocity
 - 0.581 to 0.746" dent depth in Aluminum (70 to 90% TNT detonation pressure)
- No propellants detonated in the attenuated configuration (2" PMMA)
- No clear correlation with NG% or particle size

Detonation

Deflagration

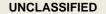
M9 ARDEC GAP TEST RESULTS

- M9 Flake propellant tested in ARDEC Gap Test configuration
- High NG content, small bed critical diameter

RDECOM®

• All shots detonated, positive (+) result. Optical fiber technique did not work for M9.

			Det. Vel.	Dent
Propellant	Shot #	PMMA gap (In.)	(mm/us)	(in.)
M9	1	None	No Trace	0.276
	2	2	No Trace	0.292
	3	2	No Trace	0.275
	4	2	No Trace	0.286


HE ARDEC GAP TEST RESULTS

- Two high explosive formulations were tested for comparative purposes
 - Octol 70/30 (cast)
 - TNT (cast)
- Octol 70/30 detonated with the 2" attenuator, positive result
- TNT did not detonate with the 2" attenuator, negative result

Explosive	Shot #	Density (g/cc)	NOL 50% Point (cards)	PMMA gap (In.)	Det. Vel. (mm/us)	Dent (in.)
Octol 70/30 (cast)	1	1.8	>220	None	8.274	1.078
	2	1.8		2	Not used	1.081
	3	1.8		2	8.239	1.119
TNT (cast)	1	1.56	~150	None	6.583	0.826
	2	1.56		2	Not used	0
	3	1.56		2	No Velocity	0

- ARDEC hazard classifiers approved the use of the ARDEC Gap Test for assisting in differentiating between HD 1.1C and 1.3C IHCs for small-grain propellants
- The test yields more information and is a better indicator of detonation than the current UN Test Series 2 shock sensitivity test

LIMITATIONS, FUTURE WORK

- 2" attenuator thickness a topic of debate
 - Unsure of origin of this input shock (20.7 kbar)
 - 0.7" attenuator used in legacy modified NOL LSGT test for HD 1.1 vs 1.3 IHC (69.8 kbar)
 - Should 50% initiation points be determined instead of limited testing at specified input shocks? Where should the line be drawn?
- Detonation or "violent reaction"?
 - ARDEC Gap Test determines if the material detonated
 - Is HC testing done to evaluate technical detonation or "violent reaction"?

Questions?

9 AUGUST 2018

DISTRIBUTION A: Approved for public release. Distribution unlimited. UNCLASSIFIED

16