21310 - Verifying Software Control
Categories (SCCs) Using Quantitative
Fault Tree Analyses (FTAS)

Robert E. Smith, CSP

Booz Allen Hamilton

2018 NDIA 21st SE Conference
Tampa, FL

25 October 2018

Booz | Allen | Hamilton

Agenda

» Introduction

» Background / Hypothesis

» Assumptions and Decomposing SCC Definitions
» Fault Tree Examples

» Case Study Verification

» Results

» Conclusion and Recommendations

» References

Booz | Allen | Hamilton

1

Disclaimer

» Any views or opinions presented in this presentation are solely those of the
author/presenter and do not represent those of Booz Allen Hamilton nor the
U.S. Department of Defense (DoD)

Booz | Allen | Hamilton

2

Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Introduction

» Proposes an approach to use quantitative Fault Tree Analyses (FTAS) to
determine and/or verify the Software Control Category (SCC) assignments in
accordance with MIL-STD-882E

» Evaluates and decomposes SCC definitions from MIL-STD-882E
» Uses guantitative FTAs and sets software failures to 1 (always fails) to

assess the impact of the top event failure probability to help determine the
proper alignment of the SCC assessment to the SCC definitions

Goal — Evaluating the feasibility of using quantitative FTAs to verify SCCs
and SwCls

Booz | Allen | Hamilton

3

Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Background

» Software Failure Probability

— Extremely difficult to determine -- this paper does not attempt to research
this topic

—MIL-STD-882E - “Determining the probability of failure of a single software
function is difficult at best and cannot be based on historical data. Software
IS generally application-specific and reliability parameters associated with it
cannot be estimated in the same manner as hardware. Therefore, another
approach shall be used for the assessment of software’s contributions to
system risk...”

—Joint Software Systems Safety Engineering Handbook (JSSSEH), Section
4.2.1.8.2 — “Traditionally, and for the purpose of being conservative,
software errors in fault trees must be set to a value of one (1) where no
supporting analysis or assurance rationale is provided.”

— For this reason, typically take a conservative approach to assessing
software failures in FTAs as “always failure” or failure probability set to 1

Booz | Allen | Hamilton

4

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Background — Software Control Categories (MIL-STD-
882E, Table IV)

TABLE IV. Software control categories

3 Flve SCC Levels SOFTWARE CONTROL CATEGORIES

Level Hame Description
= Software funchionality that exemcises autonomous control author il
1 — Autonomous (AT) e e e
T — predetermined safe detection and intervention by a contnol entity fo preciude the ooccumence
1 iAT) of a mishap or hazard.

(This definifion includes complex systemisofware functionalfty with multile subsysfems,

- Seml' AUtOﬂomOUS (SAT) inferacfing paraiiel processors, multiple inderfaces, and safedy-criical funchions that are tme

criticat,)

- Redundant Fault Tolerant (RFT) i e i b e e

detection and ntervention by independent safety mechansms to mitigate or control the

mishap or hazand.
I -ﬂ t' | {This definfion inciudes the control of moderately complex system'soffware functionality, no
n uen Ia parallel processing, or few inferfaces, but other safely systems/mechanisms can parfially
Semi- mifigate. System and soffware fault defection and annunciation nofiies the control ently of
2 Autonomous fhe nesd for required safety schions)

o b~ WD
I

(SAT)
- N O Safety (N S I) = Software item that displays safety-significant infermation reguiring immediate operator entity
o execute a predetermined action for mitigation or control over a mishap or hazand
Software exception, falure, fault, or delay will allow, or fal to prevent, mishap occumence.
(This definiion assumes that the safety-crifical display informadion may be fime-criicall buf
fhe time avalabie does nof excesd the fime reguired for adequade confrod enfity response
amd hazard contnol.)

= Software functionality that =sues commands ower safety-signiicant hardware systems,
subsystems, of components requiring a control entity to complete the command function
The system detection and functional reaction includes redundant, independent fault bolerant
mechanismes for each defined hamandous condibon

Redundant (This definifion assumes that fhere is adequafe faul dedection, annuncistion, folersnce, and
3 Fault Tolerant sysfem recovery fo prevent the hazard occumence i software falls, maffunctions, or
- = degrades. There are redundant sources of safefy-significant information, and mtigating
(RFT) functionalfty can respond within any fime-crifeal penod |

= Software that generates information of 3 safety-critical nature usad to make critical
decsions. The system includes several redundant, independent fault tolerant mechanisms
for each hazardous condition, detection and display.

= Software generates information of a safety-related natwre wsed to make decisions by the

< Ll operator, but does not require operator action to awoid a3 mishap
= Software funcionality that does not possess command or control authority ower safety-
No Safety significant hardware systems, subsystems, or components and does not provide safety-
5 Impact significant information. Software does not provide safety-significant or time sensitive data or
(NSI) mformniation that requires control enfity inferaction. Software does not transpaort or resolve

communication of safety-significant or time sensitive data.

Booz | Allen | Hamilton

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Background — SCC and Software Criticality Indices
(SwCls) (MIL-STD-882E, Table V)

TABLE V. Software safety criticality matrix

» Five SwCls Levels for performing Level of Rigor

SOFTWARE SAFETY CRITICALITY MATRIX

(LO R) SEVERITY CATEGORY

—SwCl 1 — Analysis of requirements, catecony | @ Z B =
architecture, design and code; conduct in- ' e st
depth safety-specific testing 2 swet swcis

—SwCl 2 — Analysis of requirements, : " -
architecture, design; conduct in-depth safety- ‘ T e
SpeC|f|C tes’“ng 5 SwCl 5 SwCl5 SwCl 5 SwCI &

—SwCl 3 - Analysis of requirements and e,
architecture; conduct in-depth safety-specific e |y s o e
testi n g SwCl3 Program shall perfiorm analysis of requirements and architecture; and conduct in-depth safety-specific testing.

L. . SwCl4 | Program shall conduct safty-specific testing
— SwCI 4 — Conduct safety-specific testing el e

NOTE: Consult the Joint Software Systems Safety Engineering Handbook and AOP 52 for

— SWC I 5 —— N Ot Safety additional guidance on how to conduct required software analyses.

Booz | Allen | Hamilton

6

Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Hypothesis — With Software Failures setto 1

» If the top event failure probability is 1, this function is likely SCC 1 -
Autonomous (AT)

» If the top event failure probability is 1e-3 or less, then there are still hardware
and/or operator influences on the function, so the SCC is likely SCC 2 - Semi-
Autonomous (SAT) or lower

» If the top event failure probability is a very small number [less than 1e-6], then
the SCC is likely 3 - Redundant Fault Tolerant (RFT); 4 - Influential, or
even 5 - No Safety Impact (NSI)

Booz | Allen | Hamilton

7

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Overall Assumptions

» Nominal failure probability values
— Hardware failures = 1e-4
— Operator errors = 1e-3

» DOES NOT assess or construct safety interlocks in the FTA examples that
are considered “software interlocks.”

— JSSSEH states “safety interlocks can be either hardware or software
oriented. As an example, a hardware safety interlock would be a key switch
that controls a safe/arm switch. Software interlocks generally require the
presence of two or more software signals from independent sources to
implement a particular function. Examples of software interlocks are checks
and flags, firewalls, come-from programming techniques, and bit
combinations.”

— Modeling software interlocks in quantitative FTAs would be another excellent
paper topic for a future conference, but are excluded from this presentation

Booz | Allen | Hamilton

8

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

SCC Assumptions

» Following slides and tables breakdown each SCC definition (SCCs 1-5) by
software failure description, hardware failure description, and operator failure
description

— This will form the basis for the Fault Tree model for each SCC level

— If the column contains “Not Applicable (N/A)” then this failure mode is
assumed not present in the SCC definition

— The last column includes the number of events included in the cut set

—Textin BOLD AND UNDERLINED indicate added descriptors to convert the
SCC definitions into failure descriptions to model as failure events in the
sample FTAs

Booz | Allen | Hamilton

9

| Introduction

| | Background

|| Assumptions / SCCs ||

FTA Examples | |

Case Study

| | Results

| | Conclusion

| | References

FTA Examples - SCC 1

TOP EVENT
OF CONCERN

£

GATE1

SCC Name Software Failure Hardware Failure | Operator Failure # of Events (in Cut
Level Description Description Description Sets)
1 Autonomous | Software N/A — no possibility | N/A - no possibility 1
(AT) autonomous control | of predetermined of predetermined

authority FAILURE

safe detection and
intervention by a
control entity

safe detection and
intervention by a
control entity

Software autonomous control authority FAILURE

AN

| EVENTL |

EVENT1 - Software

GATELl - Top Event

SCC Determination

SCC Rationale

Failure Probability Probability Trend
(Q — Unavailability) (Q — Unavailability)
1 (always fail) 1 (always fail) 1 Equal failure probability

0.10 0.10
le-2 le-2
le-3 le-3
le-6 le-6
le-9 le-9

values show Top Event is
directly dependent on the
Software Functionality

Booz | Allen | Hamilton

| Introduction | | Background

|| Assumptions / SCCs ||

FTA Examples | |

Case Study | |

Results | |

Conclusion | |

FTA Examples — SCC 2 — Two options

SCC Name Software Failure Hardware Failure | Operator Failure # of Events (in Cut
Level Description Description Description Sets)
_ 2 Semi- Software control Time NOT allowed | N/A 3 (or more than 3)
Autonomous | authority EAILURE | for predetermined
(SAT) safe detection and
intervention by
) independent safety
Optlon 1 — mechanisms
(Assume at least two
(2) independent
- safety mechanisms
FAIL)
— 2 Semi- Software FAILS to | N/A Immediate operator 2
Autonomous | display safety- entity FAILS to
] (SAT) significant execute a
Opt|on 2 information predetermined
action for mitigation
or control in the
- appropriate

timeframe.

Booz | Allen | Hamilton

References

Introduction | |

Background

|| Assumptions / SCCs ||

FTA Examples | |

| | Results | |

Conclusion | |

References

Option 1 —

Option 2

Softw are control
authority FAILURE

e detection and intervention by
lependen safety mechansm #2

EVENTL ||

EVENT2 |[EVENT3

Q=1

Q=le-4 Q=1e-4

TOP EVENT OF
CONCERN

£

GATEL |

Q=1e3

Software FAILS to displays
safety-significant information

mmediate operator entity FAILS t0

execute a predetermined action for
mitigation or control in the appropriate
i

[Event1 ||

EVENT2

Q=1

Q=1e-3

EVENT1 - EVENT?2 - EVENTS3 - GATELl-Top SCC SCC Rationale
Software Mechanism Mechanism #2 Event Determination
Failure #1 Failure Failure Probability Trend
Probability Probability Probability
1 (always fail) le-4 le-4 le-8 2 Top event failure
0.10 le-4 le-4 le-9 probability is the
le-2 le-4 le-4 le-10 product of the
le-3 le-4 le-4 le-11 two (2)
1le-6 le-4 le-4 le-14 mechanism
1e-9 le-4 le-4 1le-17 failures
EVENT1 - EVENT?2 - GATEL - Top SCC SCC Rationale
Software Operator Event Determination
Failure Failure Probability Trend
Probability Probability
1 (always fail) le-3 le-3 2 Top event failure
0.10 le-3 le-4 probability is the
le-2 le-3 le-5 failure
1le-3 1le-3 1le-6 probability of
1e-6 1e-3 1e-9 operator failure
le-9 le-3 le-12

Booz | Allen | Hamilton

| Introduction | |

Background

|| Assumptions / SCCs ||

FTA Examples | |

Case Study | |

Results | |

Conclusion

| | References

FTA Examples — SCC 3 - Two options

Option 1

Option 2 —

SCC Name Software Failure Hardware Failure Operator Failure # of Events
Level Description Description Description (in Cut Sets)
3 Redundant | Software functionality | At least two (2) Control entity 3 or more

Fault FAILS to issue hardware fault INADVERTENTLY
Tolerant commands over tolerant mechanisms completes the
(RFT) safety-significant FAIL command function.
hardware systems,
subsystems, or (Does this count as a
components failure in the FTA if
the software fails to
issue appropriate
commands?)
3 Redundant | Software EAILS TO | Several (at least three 4 or more
Fault generate information | (3)) redundant,
Tolerant of a safety-critical independent fault
(RFT) nature used to make tolerant mechanisms

critical decisions

FAIL for each
hazardous condition,

detection and display.

Booz | Allen | Hamilton

Introduction | |

Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References
TOP EVENT OF
CONCERN
- EVENTL - EVENT2 - EVENTS - GATEL1- Top SCC SCC Rationale
- Software Hardware Hardware Event Determination
Failure Fault Fault Tolerant Probability Trend
Probability Tolerant Mechanism #2
Q=fes Mechanism Failure
#1 Failure Probability
. Hardware fault Hardware fault Probability
Opt|0 nl — folerant mechanism | | tolerant mechanism 1 (always fail) le-4 le-4 le-8 3 Top event failure
0.10 le-4 le-4 le-9 probability is the
[EVENT1 | | EVENT2 | | EVENT3 le-2 le-4 le-4 1e-10 product of the
1le-3 le-4 le-4 le-11 two (2)
1e-6 le-4 le-4 1le-14 mechanism
Q=1 Qzted Qzted le-9 le-4 le-4 le-17 failures
— — EVENT1 - EVENT2 - EVENTS - EVENT4 - GATEL - SCC SCC
Software Hardware Hardware Hardware Top Event | Determination | Rationale
Failure Mechanism | Mechanism | Mechanism | Probability Trend
Probability | #1 Failure #2 Failure #3 Failure
Probability | Probability | Probability
. 1 (always le-4 le-4 le-4 le-12 3 Top event
Opt|0n 2 — fail) failure
Redundan, independent fault Redundant, mgepenuem Tault Redundant, mliependenl Tadlt 0.10 le-4 le-4 1le-4 1e-13 prObabi | |ty
- il i le-2 le-4 le-4 le-4 le-14 is the
le-3 le-4 le-4 le-4 le-15 product of
[eventi J[event2 | [EveNT3 | [EVENT4 1e-6 le-4 1e-4 1e-4 1e-18 the three
1e-9 le-4 le-4 le-4 1e-21 ©)
Q=1 Q=1le-4 Q=1e-4 Q=le-4 mechanism
— failures

Booz | Allen | Hamilton

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples Case Study | | Results | | Conclusion | | References
} SCC 4 def| N |t| On | m p||es SCC Name Software Failure Hardware Failure Operator Failure # of Events
Level Description Description Description (in Cut Sets)
H H 4 Influential | Software FAILS to N/A N/A No Mishap /
- 1) there IS NO mIShap (Or FTA generate information Top Event if
of a safety-related software

top event) if this safety failure
occurs and

—2) safety-related nature is
related to a Marginal /
Negligible severity.

» Therefore, there is no need to
develop a FTA since there is no
mishap / top event if software
failure occurs.

nature used to make
decisions by the
operator, but does not
require operator
action to avoid a
mishap.

failure occurs

Booz | Allen | Hamilton

15

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

FTA Examples — SCC 5

» Based on the SCC 5
definition:

SCC Name Softwgre: Failure Hard\{val_'e Failure Opera}to!’ Failure # of Events (in Cut
_ NO need to develop a FTA Level Description Description Description Sets) - .

. . . 5 No Safety | N/A N/A N/A Software functionality
since software functionality Impact (NS1) NOT elated o ary
IS not related to any safety frton.No Wit
Significant function and failure occurs

there is no mishap / top
event if software failure
OCCurs

Booz | Allen | Hamilton

16

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Initial Results

» While the sensitivity analyses did not expose any revelations, they did provide
the following range of failure probabilities

» Probability ranges could be used as a “rule of thumb” during SCC
assessment when software failure probabilities are setto 1

Software Failure Probability GATEL - Top Event Probability SCC Determination Trend
Range
1 (always fail) 1 1 — Autonomous (AT)
1 (always fail) le-3to1l (further SCC determination needed
to decide if SCC 1 or SCC 2)
1 (always fail) le-3 10 1e-8 2 - Semi-Autonomous (SAT)
1 (always fail) le-8 to 1le-12 3 - Redundant Fault Tolerant (RFT)
1 (always fail) N/A — no mishap/top event 4 — Influential (1)
N/A — no software functionality N/A — no mishap/top event 5 - No Safety Impact (NSI)

Booz | Allen | Hamilton

17

Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Case Study to Verify Initial FTA Examples

» Using a more realistic model, a sample fault tree of a fictitious launching
system with a variety of fault events

» Top event is “Inadvertent Launch”

Booz | Allen | Hamilton

18

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Case Study to Verify Initial FTA Examples (cont)

» Key:

—Red = Software failures in red
—Yellow = Firmware failures in yellow
— Green = Operator failures in green
— Default White = Other failures (e.g., mechanical failures)

Booz | Allen | Hamilton

19

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Case Study to Verify Initial FTA Examples (cont)

» For this sample fault tree, a Fault Tree =

= I Faiure Mocsls: 10 Total number of failure models: 10 Tatal number of CCF madels: 0
i i Automated Wave Soldering Defect e e meses

application is used including the use ofa | :g==- s | e

i m i@ elecrenic Devies Failure —
! i g Mechanical Eailure ame: | Software Fadure

failure model library to easily and quickly | :3ume.. = G

i &l Other Human Errar Unavallabiliy: |1

change failure probabilities to perform B) : |
sensitivity analyses of software failures |

al EVENT&2 |\- an & S0 _I

sl EVENT 14 Failure Frequency: |0

at: EVENTS1 [¢
at: EVENT12 |

=]
: EVENT23

- o00000000
gorprrIrERY

» All other failure probabilities for the

various failure models are kept at their | B o
assumed failure levels eI —_—

Ix- Ll
[a}
a
[
=
2
=

—Hardware failures = 1e-4
— Operator errors = le-3

Booz | Allen | Hamilton

20

Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Case Study Results
Cut Set Report (partial)

Software Firmware Top Event SCC SCC Rationale
Failure Failure Probability — | Determination Gate fame e Cut Set Set Unavailabilty
Inadvertent Trend GATET 1 EVENTE_ o6
LaUnCh (;:EVENT32
1 (always fail) 1 1.01e-6 2-SAT Top Event probability is between 1e-3 to HEVENTZ5 “EVENTZ6
1e-8 as listed in Table on Slide 17 EVENTA0 EVENTD
0.10 1 3.77e-12 3-RFT Top Event probability is close to 1e-13 as P oISICEY
listed in Option 2 Table on Slide 14 when GATE! 2 EVENIG EVENTIZ [1e6
Software Failure is 0.1. “EVENT24 “EVENT32
le-2 1 5.18e-18 3-RFT Top Event probability is close to le-14 as CEVENTAT LEVENTA
listed in Option 2 Table on Slide 14 when Efgmijggmgg
Software Failure is 1le-2. EVENTE2
1e-3 1 4.87e-23 3-RFT Top Event probability is close to le-15 as | |48 ? SN L
listed in Option 2 Table on Slide 14 when JEVENT2Z EVENTS
Software Failure is 1e-3. “EVENT27 “EVENTZ8
le-6 1 1.22e-29 3-RFT Top Event probability is close to le-18 as N ENTeEvENT
listed in Option 2 Table on Slide 14 when __ GEVENTSZ
Software Failure is le-6.
le-9 1 1.01e-32 3-RFT Top Event probability is close to 1e-21 as
listed in Option 2 Table on Slide 14 when
Software Failure is 1e-9.

Results — SCC assessed as 2-SAT (conservative assessment); additional
verification could be provided by the Cut Set Report, Functional Hazard
Analysis (FHA) and System Safety Working Group (SSWG)

Booz | Allen | Hamilton

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Conclusion

» Quantitative FTAs can be used to verify the SCC level

» Rough approximation of the top event failure probability ranges to determine
the SCC when software failure probabilities are setto 1

— Further refinement may be necessary as additional case studies are
performed for more complex and realistic fault tree models

— Safety interlocks that are software interlocks (e.g., checks and flags,
firewalls, bit combinations) are excluded from this paper - Modeling software
interlocks could impact the conclusions of this paper

» Cut set reports can also be used to assess the combinations of failures
required to cause the top event

Booz | Allen | Hamilton

22

| Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

Recommendations

» If it is desired to reduce the SCC, the System Safety Practitioner should
closely exam the results of FTAs and cut set reports

» Consider design enhancements that would add additional hardware controls,
operator verification, and/or design features into the system functionality to
reduce software autonomy

» Lowering the SCC could reduce the SwCI and LOR tasking required, which
may save program resources when it comes to performing complex LOR
tasks, such as code analysis

—Understood that in some cases, operational and design requirements will
dictate that software functionality for safety critical operations can only be
autonomous

— Inserting additional safety interlocks or operator interventions may not be
feasible

Booz | Allen | Hamilton

23

Introduction | | Background | | Assumptions / SCCs | | FTA Examples | | Case Study | | Results | | Conclusion | | References

References

» MIL-STD-882E, “Department of Defense Standard Practice System Safety,”
May 11, 2012.

» Department of Defense (DoD) Joint Software Systems Safety Engineering
Handbook (JSSSEH), August 27, 2010.

Booz | Allen | Hamilton

24

Questions?

Robert E. Smith, CSP
Senior Lead Engineer

Booz | Allen | Hamilton

Booz Allen Hamilton

1550 Crystal Dr, Suite 1100
Arlington, VA 22202

Tel (703) 412-7661

smith bob@bah.com

Booz | Allen | Hamilton

25

