

21st Annual National Defense Industrial Association Systems and Mission Engineering Conference

Engineering Cyber-Resilient Weapon Systems (CRWS) Workforce Development Workshop

Melinda Reed

Office of the Under Secretary of Defense for Research and Engineering

October 2018

Digital Environment Demands a Change

2018 National Defense Strategy

"Civilian workforce expertise. A modern, agile, information-advantaged Department requires a motivated, diverse, and highly skilled civilian workforce. We will emphasize new skills and complement our current workforce with information experts, data scientists, computer programmers, and basic science researchers and engineers — to use information, not simply manage it."

Diverse Weapon System Ecosystem Environments – to Include Cyberspace

Weapon System Ecosystems are complex – education and training needed to overcome challenges driven by application of general purpose requirements

Engineering Cyber-Resilient Weapon System Workforce Development

Problem Statement:

- The evolving and complex nature of the challenges presented by critical systems operating in contested cyberspace environments requires unique skills beyond those addressed by information technology security education.
- DoD must develop the ability to engineer and assess the combined safety, security, and resilience in current and future systems in the presence of determined cyber adversaries.

Workshop 6 (Jul 31– Aug 2 2018)

State of the Engineering Workforce; Cybersecurity Engineering

Goal: Identify skill sets and curriculum needs for our current and future engineering workforce

- Understand engineering education gaps related to cybersecurity
- Develop Need's for today's engineering workforce
- Develop Need's for tomorrow's engineering workforce

Sponsored by the SERC

Composition and Approach 3 Panels, 2 Breakout Sessions

3 Perspectives

- DoD
- Academia
- Industry

Diverse Organizations

- Army
- Navy
- Air Force
- Missile Defense Agency National Security Agency Industry
- FFRDCs
- Defense Acq University

Diverse Expertise

- Hardware Specialists
- Software Specialists
- Intelligence
- Counterintelligence
- Safety specialists
- Anti Tamper Specialists
- Systems Engineering
- Technologists
- Implementers

3 Panels

- Panel 1: Government Engineering Workforce Challenges
 - Air Force, Army, Navy, DAU Perspectives
- Panel 2: Academic Programs
 - University of Virginia, Georgia Institute of Technology, Embry Riddle (Aeronautical University)
- Panel 3:How to Address the Challenges (Academia/Industry)
 - Systems Engineering Research Center, Boeing, University of Connecticut

2 Breakout Sessions

- Breakout Session 1: Understand engineering education gaps and current needs related to cybersecurity
- Breakout Session 2: Anticipate and develop needs for tomorrow's engineering workforce

Diverse Expectations and Perspectives

Breakout Session Questions

Breakout Session 1

GOAL: Understand engineering education gaps and current needs related to cybersecurity

- What are the distinguishing characteristics of defense related engineered systems with respect to security education, skills, and competencies?
- What are the primary experienced gaps in workforce processes, competencies, and qualifications today?
- How do educators view these challenges and what are the primary ideas to address them?

Breakout Session 2

GOAL: Anticipate and develop needs for tomorrow's engineering workforce

- In the context of engineered systems, at what levels should security education be addressed?
- What background competencies are needed to prepare students for that education?
- What are the types of curricula that would support the education needs? List some specific examples.
- How and where will people learn? What types of facilities and laboratories are necessary to meet the education challenges?

Participants placed into 4 Groups; Each Responded to Same Questions

Breakout Session Observations

Taxonomy

- Establish and extend security conceptual understanding
 - Deconflict security terminology
- Work within existing engineering taxonomy rather than create something that is referred to as "cyber"

Fundamental principles of security are critical

- How do we design an inherently secure system?
 - Set of comprehensive security objectives
 - Simple rules and principles to drive models and design
- Design Guidance
 - Has to be detailed enough to be useable but not too large to inhibit use
 - Must capture the concepts of malice and subversion

Education and Training are Different – We Need Both

- More flexibility with Master's programs
- Research projects drive education
- Role of certification

Education/Training Needs and Priorities

- Policy and Governance
- Program Execution
- Prime contractor

Metrics

- Technical performance measures/metrics may suffice in near term
- Need Basis to Demonstrate claims of "cyber resilient"

Testing

 Tools are not scalable and availability is growing faster than ability to put them to good use

Use Observations as Basis for Strategy and Roadmap

Foundations, Principles & Concepts

- Integrate across specialty and security domains
- Broad applicability for application

Practices capture application in "type-specific" context

- Weapon system
- Capability
- Architecture and design patterns
- Technology
- Assurance

Academia provides education on what we accept as standardized knowledge

Standardized knowledge must reflect set of principles that are standardized practice by industry and government

Next Steps

 SERC to Finalize Report on Education for Engineering Cyber-Resilient Weapon System Findings and Recommendations

- Develop Engineering Cyber-Resilient Weapon System
 Workforce Education and Training Strategic Roadmap
- Standardize knowledge for Engineering Cyber-Resilient Weapons System
 - Return to the Principles of Security Design
 - Principles of Security Design must be reflected in a design model

DoD Research and Engineering Enterprise Solving Problems Today – Designing Solutions for Tomorrow

For Additional Information

Melinda Reed

Office of the Under Secretary of Defense for Research and Engineering 571.372.6562 | melinda.k.reed4.civ@mail.mil