
Systems Engineering for Highly Rapid Development

The Parallel Agile Process

Doug Rosenberg - Parallel Agile, Barry Boehm - USC

What if we could easily integrate

the work of many developers

writing software in parallel?

What if we could easily integrate the work of many

developers writing software in parallel?

▪ Accelerate projects by increasing the number of developers

▪ Get to market faster without sacrificing quality

▪ Scale by adding developers, not stretching the calendar

▪ Significant cost savings, radical schedule compression

Accelerate projects by increasing the number of developers

each developer gets a use case

▪ We’ve known how to split systems into use cases for a long time
▪ It’s putting the work back together that’s the trick

▪ Default partitioning for parallel development is one developer per use case
▪ Complex use cases split into sub-tasks as necessary

▪ More use cases require more developers

▪ Usually one use case can be completed in under a month
▪ Write narrative description

▪ Decompose into Models Views Controllers (MVC)

▪ OOD using sequence diagrams, state machines

▪ Code, then Acceptance Test

▪ Different use cases can share the same domain objects
▪ Integration across use cases by API to access domain object

Get to market faster without sacrificing quality

▪ 3 phases: Proof of concept, MVP, Initial Release

▪ Each phase approximately a month long

▪ Proof of concept uses prototyping to discover

requirements, reduce risk

▪ MVP uses UML modeling, details sunny/rainy day

scenarios, reduce technical debt

▪ Initial Release focuses on acceptance testing,

performance tuning, optimization, reduce hotfixes

▪ Big projects don't add more sprints, they add more developers working in parallel

▪ Small, medium, (reasonably) large projects take the same amount of time (roughly 3

months) if enough developers are available

▪ No, we can’t do an entire ballistic missile defense system in 3 months

▪ Merge and integrate at the end of each phase

▪ Test team works concurrently with developers for each phase

Scale by adding developers, not stretching the calendar

Significant cost savings, radical schedule compression

▪ Reduced need for refactoring, fewer hotfixes minimizes cost

▪ Schedule compression analogous to parallel processing in HW

▪ Agility - get to code early to discover requirements

▪ Discipline - don't ship the prototype and refactor later, but design carefully

▪ Design is done one use case at a time, doesn't take much time

▪ Prototype first then design - not big design up front

How can we easily integrate the

work of many developers writing

software in parallel?

Q: How can we easily integrate the work of many

developers writing software in parallel?

A: Apply B2B integration strategies at the developer level

Apply B2B integration strategies at the developer level

Code generate NoSQL databases and REST APIs at project inception

Code generate NoSQL DB and REST APIs at project inception

▪ Executable Domain Models

▪ Model the problem domain

▪ Each domain object becomes a NoSQL collection

▪ Database Access functions code generated

▪ Database Access functions wrapped in REST API

▪ DB+API generated at the beginning of the project

▪ Prototypes built against live DB using API

▪ Database schema evolved from prototypes

▪ Developer-to-developer integration via shared domain objects

Database access code doesn’t get written manually

in round numbers this might be 20-40% of your code

Agile project management using visual models

▪ Work is organized into Epics,
User Stories, and Tasks

▪ Bottom-up estimation similar to
story points

▪ Top-down estimation from use
cases, MVC decompositions

Balancing Agility and Discipline targets the cost minimum

3 phase spiral model development: each phase takes a month

▪ Inception – Model the problem domain and make it executable

▪ Proof of Concept Phase – Prototype to discover requirements

▪ MVP Phase – Model behavior to elaborate requirements

▪ Release Phase – Acceptance test against requirements

Continuous Acceptance Testing

▪ Test all sunny-day/rainy-day scenarios

▪ Test all requirements

▪ Test team operates concurrently with development

Everything goes faster when

you work in parallel

Everything goes faster when you work in parallel

▪Develop in parallel
▪ usually one use case per developer

▪ split complex use cases as needed (e.g. server-side logic)

▪ Integrate in parallel
▪ multiple use cases access shared domain objects using REST API

▪ even early prototypes access live database

▪ language and platform neutral (iOS, Android, Angular, Unity…)

▪Test in parallel
▪ test team works concurrently with dev team

▪ it’s never too early to start acceptance testing

Does it work?

The difference between theory and practice is that in theory there’s

no difference between theory and practice but in practice there is.

Does it work?

▪ Four test projects involving around 200 graduate students

▪ 2014-2015 Location Based Advertising (75 students)

▪ 2015 Picture Sharing (12 students)

▪ 2016-2018 CarmaCam (75 students)

▪ 2017-2018 TikiMan Go Game project (25 students)

Project 1: Location Based Advertising

▪ Originally a couple of CS577 homework assignments

▪ 47 students wrote use cases, 29 wrote prototype code

▪ 75 students over 3 semesters

▪ Total development effort around 2 person-years

▪ Developed concept of Executable Domain Models

Concept: Geofenced coupon delivery

Store publishes coupon and

specifies geofence using

web app

Mobile app receives

coupon when user

arrives at store

Redeeming coupon

generates transaction

Project 2: PicShare

Photo sharing app for events

Project 3: CarmaCam

Uploading media

files to the cloud

is interesting…

CarmaCam tests the full Parallel Agile process

▪ MEAN Stack, Android, iOS, Mongo DB, Node JS, AWS EC2

▪ Around 75 students over multiple semesters

▪ 95% staff turnover across semesters (!)

▪ 25 students in CS590 Fall 2018

▪ Pilot project for Executable Domain Model code generator

▪ Evolved 3 phase development pattern

▪ Visual model sprint plans

▪ Now entering commercial use for bus lane parking violations

▪ Adding Machine Learning to recognize dangerous driving from video

Proof of Concept (prototyping, 15 students)

MVP (3 returning students, 12 new ones)

Initial Release (20 new students 0 returning, then 10 more, 2 returning)

Emergency Alert receiver app uses geospatial query to monitor DUI videos

Need AI verification of DUI before

broadcasting emergency video

Train AI models to recognize dangerous driving (15 students)

Train AI models to recognize dangerous driving from video

▪ Machine Learning Proof

of Concept

▪ Use AI models to filter

out spurious videos

▪ Route DUI videos to

field or to dispatcher for

review

▪ Python, Tensorflow,

OpenCV, Convolutional

Neural Networks

Automatic vehicle and lane detection

Project 4: TikiMan Go

▪ VR/AR Game project

▪ Battle animated tiki men for control of Hawaii

▪ Built in Unity3D, C#, Mongo, Node

▪ 25 students to date

▪ Now partnering with well-known tiki artist

Virtual Reality off-island, Augmented Reality on-island

So…Does it work?

Yep!

It works for these technologies

▪ LBA: Cassandra, Node JS, JQuery Mobile, Cordova/PhoneGap

▪ PicShare: iOS, Parse Framework

▪ CarmaCam: Android/Java, iOS/Swift, MEAN Stack (Mongo DB,

Express JS, Angular JS, Node JS), Python, TensorFlow, Open CV

▪ TikiMan Go: Unity 3D, Blender, Kudan, World Composer, Mongo

DB, Node JS

Student laboratory has allowed us to experiment

▪ Not many businesses could spare 200 developers to experiment with

▪ After 4 years of student projects it’s time to graduate!

▪ Student projects average 95% staff turnover every semester

▪ Don’t try this at home!

Industry testing beginning now

▪ Mongo/Node replacement for 30 year old legacy database system

▪ Both CarmaCam and TikiMan becoming commercial ventures

▪ 30+ years of ICONIX experience behind the UML approach

▪ Vast experience with mega-projects from TRW behind ICSM

▪ Cutting edge PhD research behind code generator

▪ Your project welcome here!

Solid Foundation

▪ Parallel Agile is deeply grounded in proven techniques

▪ Combining these techniques enables large-scale parallel development

▪ Experiments with student projects ongoing

▪ Industry trials beginning

Parallel Agile lets us integrate the work of many developers

▪ Enabling parallel development has great potential for reducing

cost and accelerating schedules

▪ Book in progress (Parallel Agile – Boehm, Rosenberg, Wang, Qi)

▪ www.parallelagile.com

▪ doug@parallelagile.com

http://www.parallelagile.com

Backup Slides

It’s easier to take Humpty Dumpty apart than to put him back together

Oddly enough, having

words (domain objects) only

mean a single thing is the

key to integrating the work

of many developers.

Test early, test often

▪ Main focus is on acceptance testing

▪ Generate test cases where possible

▪ Expansion of use case sunny/rainy day

threads especially useful

▪ Test team works in parallel with developers

Scenario tests exercise all usage paths

▪ For a use case with one sunny day path

and three rainy day paths we need at least

four test threads

▪ Scenario tests are generated automatically

Parallel development, simplified

Set up for parallelism

Develop in parallel

One developer per use case

47 use cases, one per student

We prototyped multiple geofencing solutions then built our own

We built power-safe, background

capable, cross-platform geofencing

as a Cordova/PhoneGap plug in

Cassandra, JQuery Mobile, Node JS

Wi-Fi power consumption with

GPS accuracy

+95% on-time coupon delivery

Design pattern for executable domain models

developed

Each class becomes

a NoSQL Collection

Create

Read

Update

Delete

Project was technical success but marketing failure

Lessons from LBA

▪ Successful failure because we learned from it

▪ Massively parallel development is possible

▪ REST APIs enabled work to integrate

▪ Total effort numbers around 2 person years for 75 students

▪ Possible to code generate DB access functions and API

▪ Two students entered PhD program

Hang on a second…

▪ We just integrated the work of 29 developers who were

working independently

▪ That’s not supposed to be possible!

▪ Maybe we should try it again?

Model sunny and rainy day scenarios

40 days to code iOS app

Students averaged 10-15 hours a week so full time equivalent around 2 weeks

Emphasis on acceptance testing

Lessons from PicShare

▪ Use of Parse Framework for back end validated concept of
Executable Domain Models (code generator was under
development in 2015)

▪ Model View Controller (MVC) decomposition of use cases
critically important and not generally well understood

▪ Testing rainy day scenarios very important

▪ Small-scale parallel development test but successful

▪ Productivity and reliability numbers were good

▪ Second semester of project done without any mentoring but
still succeeded

▪ Uploading media files to the cloud is interesting…

Inception (generate database and API code)

MVP – careful design

Code generate database, API for machine learning training

Whiteboard sketch

becomes executable

As a ML model trainer I’d

like to be able to

annotate key frames

from an incident video

Mongo, Node and client-side code auto-generated

Allows us to prototype

the video editor page

Lessons from CarmaCam

▪ Domain-driven microservice architecture has allowed 75 developers

to collaborate over multiple semesters with very few issues

▪ 3 phase approach (POC, MVP, R1) works well

▪ Visual model sprint plans work well

▪ 95% staff turnover every semester is really hard

▪ Student projects can graduate into real products

▪ Productivity numbers are very high with parallel development

Lessons learned from TikiMan Go

▪ Auto-generated DB and API code works for game development

▪ Prototype first then design works well

▪ 1 developer per use case partitioning works well

▪ Matching developer skills to tasks hugely important

▪ recruiting has been the biggest problem

▪ 100% staff turnover every semester is really hard

Summing up

▪ If we could integrate the work of large numbers of

developers working in parallel we could make software

projects go faster by adding more developers

▪We can integrate the work of large numbers of

developers using a domain-driven microservice

architecture, auto-generated at project inception

▪Does it work? 4 years of test projects involving 200

grad student developers say Yes. Transition from

classroom to industry is underway.

Agile (feedback-driven) management

Disciplined (plan-driven) design

Spiral (evidence-driven) lifecycle

