

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Demonstration of an Environmentally Benign Composition for the M209 Shotshell Primer

Jared Moretti Pyrotechnics Technology Division CCDC – Armaments Center Picatinny Arsenal, NJ 07806

James Wedwick Northrop Grumman Innovation Systems (Small Caliber Systems) Lake City Army Ammunition Plant Independence, MO 64056

DISTRIBUTION A: Approved for Public Release. Distribution is unlimited.

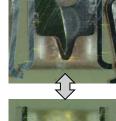
Introduction

Initial Development at CCDC

Safety Approval at Manufacturer

Mixing and Primer Assembly

Conclusions



- HHS suite of armaments employ the 209 shotshell primer
 - HHS is used in training and combat for visible smoke and illuminant signatures
 - 209 primer embedded in end of rocket barrel; end cap contains firing pin

Cup in cup design

- Most primers use toxic lead styphnate as active explosive ingredient
- Manufacturers have lead-free primer options based on DDNP
 - Inadequate for military, due to vacuum thermal stability and cold performance
- An alternate lead-free explosive is copper (I) 5-nitrotetrazole (DBX-1)
 - Proven out in detonators, CAD/PAD devices and more
 - Relatively unexplored in primers
 - A possible drop-in production replacement; no major capital investment needed

ALTERNATE, LEAD-FREE PRIMER MIX

- Established a new primer mix based on DBX-1 to replace lead
 - Also replaced:
 - •barium nitrate (toxicity problem)
 - •antimony sulfide (supply problem)
 - Mixed 10 gram batches at CCDC by hand
 - Loaded into primer bits with custom tooling
 - One at a time!

Ingredient	Function	Wt. %
Potassium nitrate (KNO ₃)	Oxidizer	61.4
DBX-1	Active ingredient	17
Aluminum powder	Fuel, slag generator	10
Tetrazene	Sensitizer, gas generator	5.7
Boron carbide (B_4C)	Abrasive, frictionator	5.7
Celvol 523	Binder	0.2

Csernica, C.; Oyler, K.; Sabatini, J.; Mehta, N. (2016). "Non-Toxic Primer Mix." US Patent no. US9409830B1.

- CCDC primers tested against commercial primers with 3.94 oz ball in 1.8 cc partially vented bomb.
 - Setup allows output and sensitivity testing simultaneously
 - CCDC and commercial primers have comparable sensitivity profile

Lot	Hbar (in.)	σ (in.)	Hbar + 4σ (in.)	Hbar - 2σ (in.)	P _{peak} (psi)
CCDC	3.32	0.22	4.20	2.88	3,962
Commercial	3.05	0.21	3.89	2.63	2,594

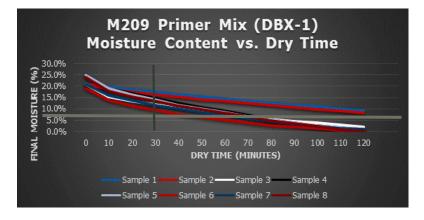
• Need to scale up primer mix at high volume producer

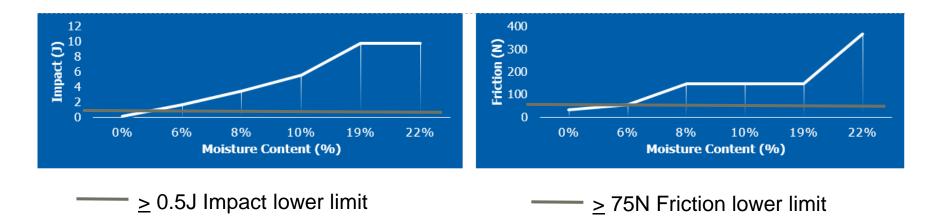
Improve manufacturability

- -Scale up primer assembly process
- -Transition from one at a time to integrated plate process
- Transitioned to NGIS out of Lake City Army Ammunition Plant (LCAAP)
 - -First needed safety approval to handle DBX-1
 - Chemical compatibility testing with common chemicals
 - Wet and dry Impact/Friction/ESD testing on DBX-1
 - 7-day water stability study
 - -Invent plate process
 - -Fabricate and test 209 primers with alternate mix

DBX-1 SENSITIVITY STUDIES

	Test	DBX-1/ water	Lead Styphnate/ water	Color Change	DBX-1/IPA
0 Hrs	Impact, cm	1	11	no	1
	Friction, N	<4	18		<4
	ESD, J	<0.0013	0.0013		<0.0013
	Impact, cm	1	11		
24 Hrs	Friction, N	<4	31	no	
	ESD, J	<0.0013	0.0013		
	Impact, cm	11	7		
48 Hrs	Friction, N	<4	11	no	
	ESD, J	<0.0013	<0.0013		
	Impact, cm	3.5	3.5	no	
72 Hrs	Friction, N	<4	18		
	ESD, J	<0.0013	0.0013		
	Impact, cm	3.5	3.5	no	
96 Hrs	Friction, N	<4	11		
	ESD, J	<0.0013	0.0013		
	Impact, cm	7	>100	no	
120 Hrs	Friction, N	<4	53		
	ESD, J	0.0013	<0.0013		
144 Hrs	Impact, cm	11	>100		
	Friction, N	<4	53	no	
	ESD, J	<0.0013	<0.0013		
168 Hrs	Impact, cm	7	>100		
	Friction, N	<4	53	no	
	ESD, J	<0.0013	<0.0013		


MOISTURE CONTENT AND SENSITIVITY

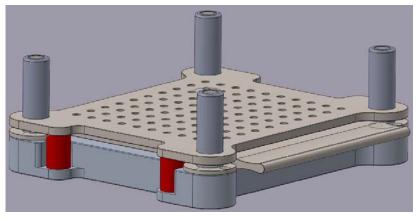

Atmospheric mix drying study and corresponding sensitivity testing to determine safe handling

All moisture levels were ESD sensitive and required a departure

Friction drove the processing time

— 6% moisture

- Approved for 10-gram mixing operation with DBX-1 primer mix
- Mixed in a speed mixer at 2,000 rpm
 - All ingredients except fuels added, mixed for two 30-second intervals
 - Fuels added and mixed two additional intervals



- Next, we needed to establish a pilot 209 primer assembly process
- Representative of regular LCAAP primer production, amenable to future scale-up
- A few key steps in the process:
- 1. Cups added to wells in base plate

2. Rub plate added, filled with primer mix

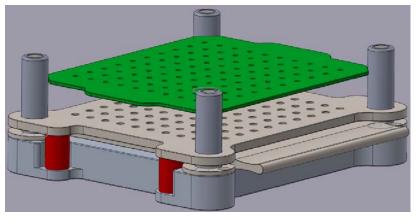
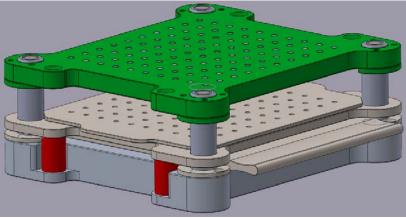
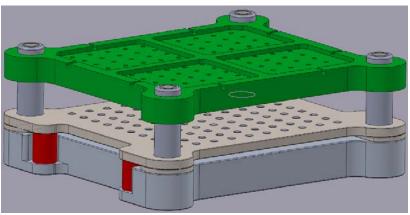
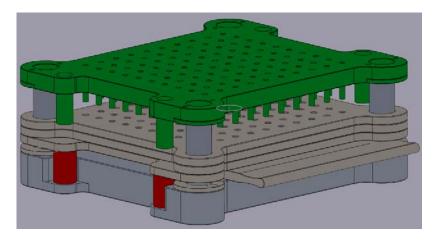
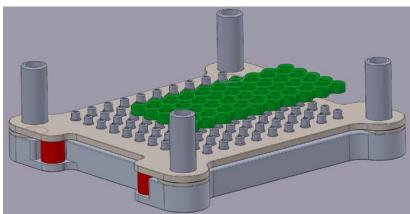
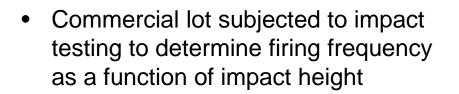



Plate gap controls pellet weight.

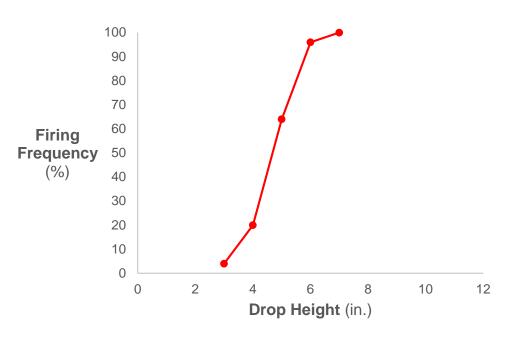



3. Pin pellet plate inserted; pellets shaken into cups

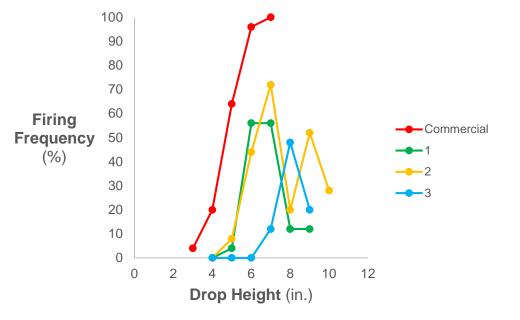

5. Battery cups pressed into cups Plate gap controls anvil-mix distance.


4. Foil punched on top of pellets

6. Completed primers transferred to packaging sleeve



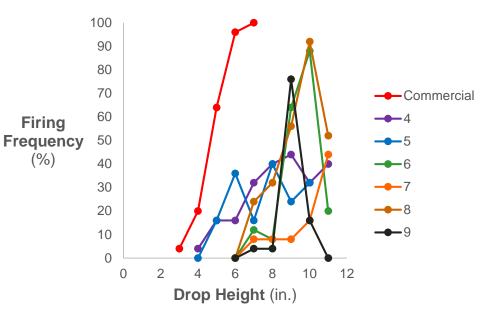
Commercial lot gave virtually linear response to impact



PRIMER TESTING (2)

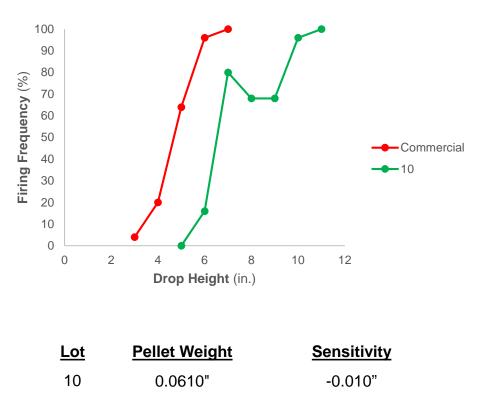
- Commercial lot tested in parallel with 3 experimental lots that varied assembly parameters
- Initial primer batches gave erratic sensitivity profiles

Pellet Weight
0.0694"
0.0652"
0.0610"



PRIMER TESTING (3)

- Made efforts to improve sensitivity profiles by adjusting assembly parameters
 - Pellet plate gap (pellet weight)
 - Battery cup plate gap (sensitivity)
- Tested 6 more lots with alternate manufacturing settings; problems remained


<u>Lot</u>	Pellet Weight	<u>Sensitivity</u>
4	0.0652"	+0.005"
5	0.0610"	+0.005"
6	0.0694"	-0.005"
7	0.0652"	-0.005"
8	0.0610"	-0.005"
9	0.0610"	-0.010"

- Next hypothesis
 - Erratic behavior due to mix inhomogeneity
 - Pocket formation within mix
- Mix procedure adjusted
 - Screen out coarser KNO₃ particles; remove sub-100 mesh material before mixing, repeat lot 9 assembly parameters
 - Profound improvement
 - Identified all-fire/no-fire energies...
 - ...but still no 50/50 point!

- DBX-1 composition shows promise
- DBX-1 mix has acceptable sensitivity numbers with the exception of ESD
- Challenges working with DBX-1
 - Very sensitive material
 - Water/alcohol does not desensitize it
 - The mix was processed with IPA which reduces available processing time
 - Breaks down in water to more sensitive material
 - Water cannot be used in the process
 - Requires different waste treatment than current materials at LCAAP
 - Waste treatment of DBX-1 mix requires more work

- Work at flare manufacturer will include function testing of lot 10 primers in:
 - Empty HHS rocket barrels
 - HHS rocket barrels with propellant
 - Fully loaded HHSs with rocket motors and payloads
- Completion of above testing will close out HHS program
- Pending results, can transition to other systems, like shotshell