

62nd NDIA Annual Fuze Conference Hyatt Regency, Buffalo, NY

Lithium Battery Innovations For Projectile Munitions

May 13-15, 2019

Paul Schisselbauer Director of Engineering EnerSys Advanced Systems Horsham, Pennsylvania (215) 773-5416 Brian Wightman Engineering Manager EnerSys Advanced Systems Horsham, Pennsylvania (215) 773-5420

Forward-Looking Information

This presentation includes forward-looking statements and/or information, which are based on the Company's current expectations and assumptions, and are subject to a number of risks and uncertainties that could cause actual results to materially differ from those anticipated. Such risks include, among others, risks associated with competitive actions, technology development and implementation, intellectual property infringement, failure to execute acquisition strategy, penetration of existing markets, expansion into new markets, hiring and retaining high quality management and key employees and general economic conditions including the risks described in the Company's most recent annual report on Form 10-K dated and filed with the SEC on May 30, 2018 along with other unforeseen risks. The statements in this presentation and accompanying commentary are made as of the date of this presentation, even if subsequently made available by the Company on its website or otherwise. The Company does not undertake any obligation to update or revise these statements to reflect events or circumstances occurring after the date of this presentation.

<u>Agenda</u>

- Applications
- Battery Characteristics
- Electrochemistries
- Challenges
- Innovations
- Performance Characterization
- Selected Cells
- Selected Batteries
- Summary

Li-Ion FTS Battery (Device No. G3203B1)

Whether your application is on the Land, Sea, Air, or Space, EnerSys can provide the power.

Lithium Batteries

Battery Characteristics

Why use Lithium Batteries?

Li-Ion Battery

C	
	-
-	/

1. Long Shelf Life

Lithium reserve batteries are unique in their ability to last for over 20 years prior to activation. This long shelf life is made possible by either storing the active materials separately until activation or by storing the active materials in a non-ionically conductive state until activation.

2. Temperature Range

Capable of operation across the full military temperature range (-65°F to +221°F/-54°C to +105°C).

3. Environmentally Hardened

Our lithium reserve batteries are optimized for operation in high acceleration environments (up to 100,000 g's) and high spin rate (30,000 RPM), applications that ordinary batteries cannot survive.

Battery Characteristics

Thermal Batteries

Lithium Alloy / Metal Disulfide Molten-Salt Power Sources

- Achieve dormancy by storing the electrodes in a non-ionically conductive state until deployed.
- Batteries can achieve activation within hundreds of milliseconds.

Characteristics in Common

- Self-contained
- Hermetic
- Reserve primary
- Lithium power sources
- Capable of being stored in excess of 20 years
- Activated on demand or by the conditions of deployment.
- Operation over the full military temperature range.

Lithium / Oxyhalide Power Sources

Ambient Temperature Batteries

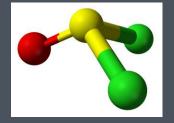
- Achieve dormancy by physically separating the active components, I.e., the lithium foil anode and the thionyl chloride electrolyte.
- Cells and batteries can achieve activation within milliseconds and then provide power and deliver energy to support mission requirements.

Lithium Batteries

High Power Density

High Energy Density

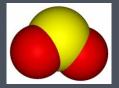
Rechargeable


Fast Activation Cold Temperature

Electrochemical Systems

Products Offered

- Lithium Thermal Batteries
- Lithium Ambient Temperature Batteries
- Lithium-Ion Rechargeable Batteries


Li

Electrochemical Systems

- Lithium Silicon/Cobalt Disulfide (LiSi/CoS₂)
- Lithium Silicon/Iron Disulfide (LiSi/FeS₂)
- Lithium/Thionyl Chloride (Li/SOCI₂)
- Lithium/Sulfuryl Chloride (Li/SO₂Cl₂)
- Lithium/Sulfur Dioxide (Li/SO₂)
- Lithium/Vanadium Pentoxide (Li/V₂O₅)
- Lithium-Ion (various chemistries)

Automated Manufacturing

• Multiple automated manufacturing lines are used to produce Ambient Temperature Batteries and Thermal Batteries.

Activation Methods

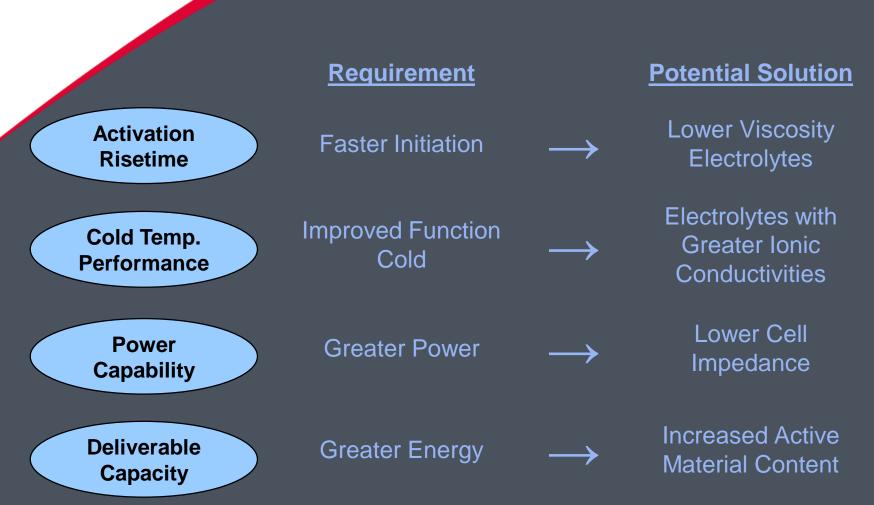
Miniature Piston Actuator

 Batteries can be activated on demand or by the conditions of deployment, such as: ballistic launch, aircraft release, or canister dispense, etc. using one or more of the following methods:

Electric Igniter

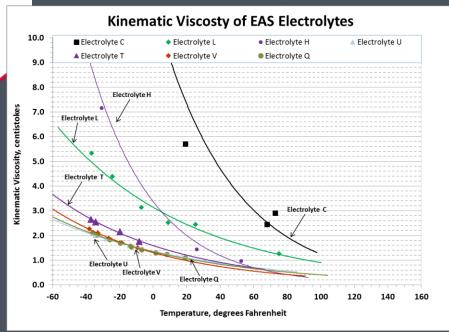
Method	Initiation
Electric Igniter	Electrical Pulse
Electric Primer	Electrical Pulse
Percussion Primer	Firing Pin, Lanyard
Stab Initiated	Squib, Thumb Screw
G-activation	Launch Acceleration, Target Impact

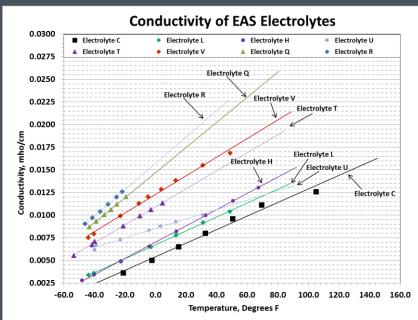
Dashpot Electrolyte Reservoir



Pyrotechnic Gas Generators

• Batteries can be activated within milliseconds to seconds.


Challenges

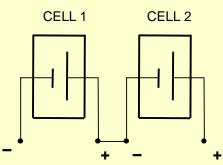


Innovations

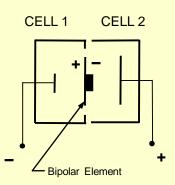
Advanced Electrolytes for Improved Cold Temperature Operation

Lower Viscosity Electrolytes

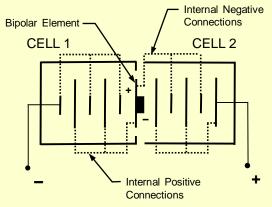
Greater Ionic Conductivities


New electrolytes are stable for 20+ year storage! Enhanced cold temp Conductivity and Viscosity give excellent rise time and voltage performance.

Battery Configurations (Liquid Reserve Primary)


What's the best configuration?

Long Mission Life High Energy


Discrete Unit Cells Cells consisting of one set of electrodes.

Moderate Power

Bipolar Cells Cells connected in series using bipolar elements.

High Power

Hybrid Bipolar Cells

Cells with multiple internal parallel connections that are connected in series using bipolar elements.

Performance requirements may be met by selecting the battery configuration most suited to the application.

Design Innovations

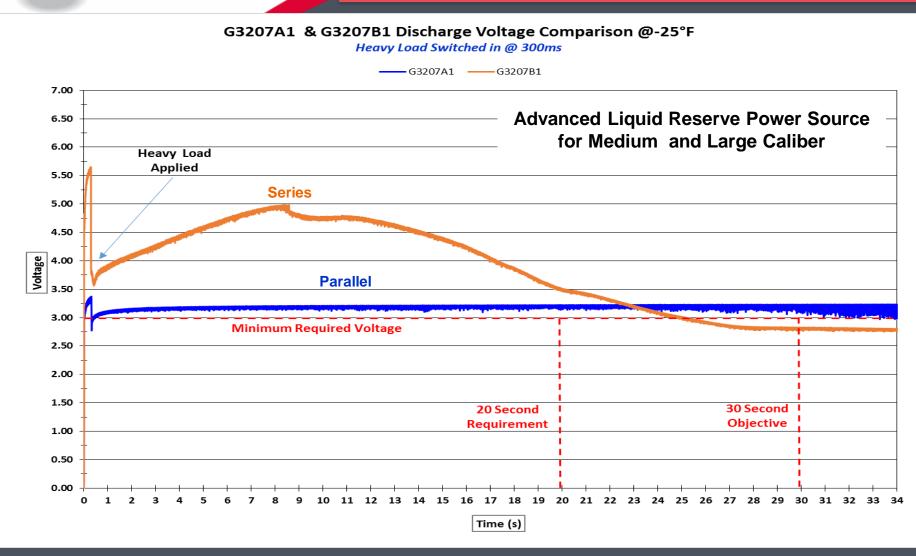
State-of-the-art batteries support next generation electronic fuzing in projectile munitions

Advanced Power Source for Medium and Large Caliber Projectiles

<u>G3207A1 - Cell</u>

1S2P Internal Electrode Structure

Power Source Size Ø0.450" Max X 0.395" Max Length (Not including terminal pin)



G3207B1 - Battery

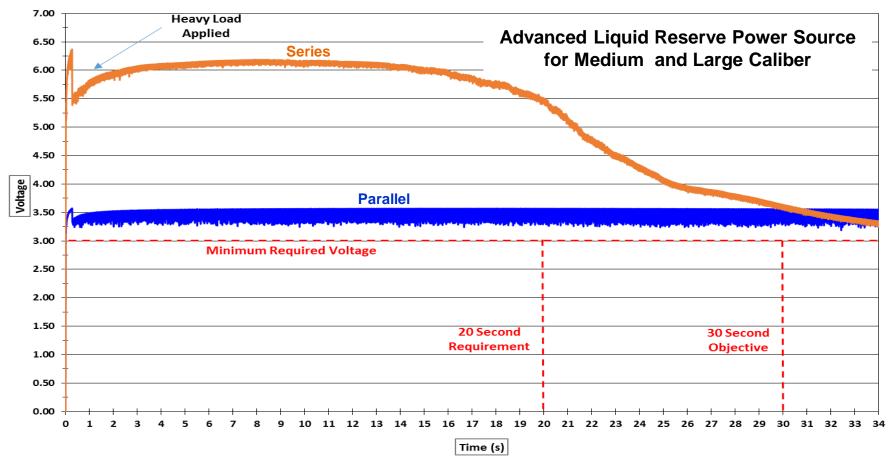
2S1P Internal Electrode Structure

Innovative design allows for parallel or series electrode configurations in same size format. Power source can be configured to meet customers power and energy needs.

EAS – Munitions

EAS

The series configuration provided higher voltage but shorter runtime under identical loading at the worse-case cold temperature extreme.


EAS – Munitions

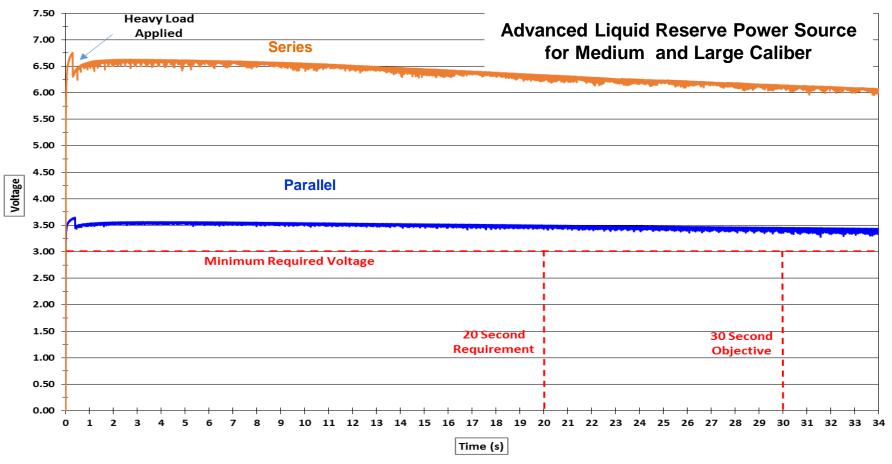
G3207A1 & G3207B1 Discharge Voltage Comparison @ Ambient

JEAS

Heavy Load Switched in @ 300ms

G3207A1 G3207B1

The series configuration provided higher voltage but shorter runtime under identical loading at room temp ambient.


EAS – Munitions

G3207A1 & G3207B1 Discharge Voltage Comparison @145°F

JEAS

Heavy Load Switched in @ 300ms

G3207A1 ____G3207B1

The series configuration provided higher voltage but shorter runtime under identical loading at the worse-case high temperature extreme.

Design Innovations

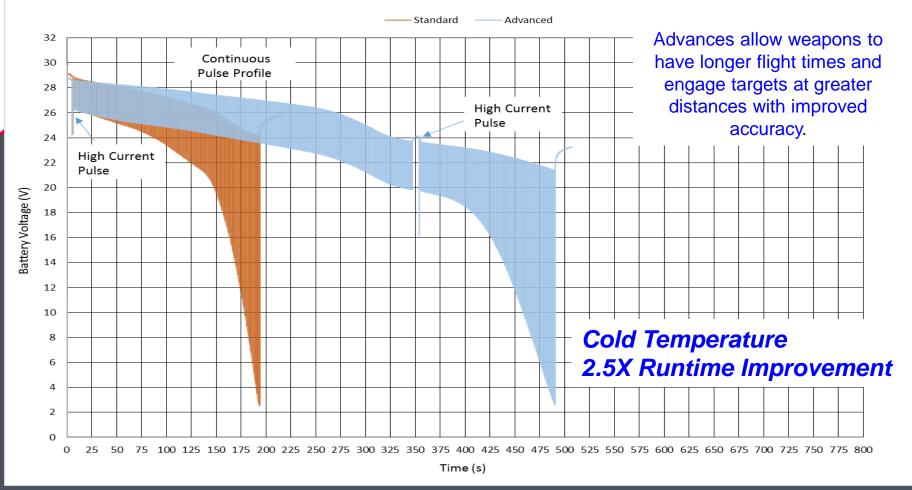
State-of-the-art batteries support next generation electronic fuzing in projectile munitions

Advanced Power Source for Next Gen Extended Range Projectiles

G3220A1 - Battery

Power Source Size Ø1.50" Max X 3.00" Max Length (Not including terminal pins)

<u>Thermal Battery Innovations for Extended</u> <u>Runtime</u>

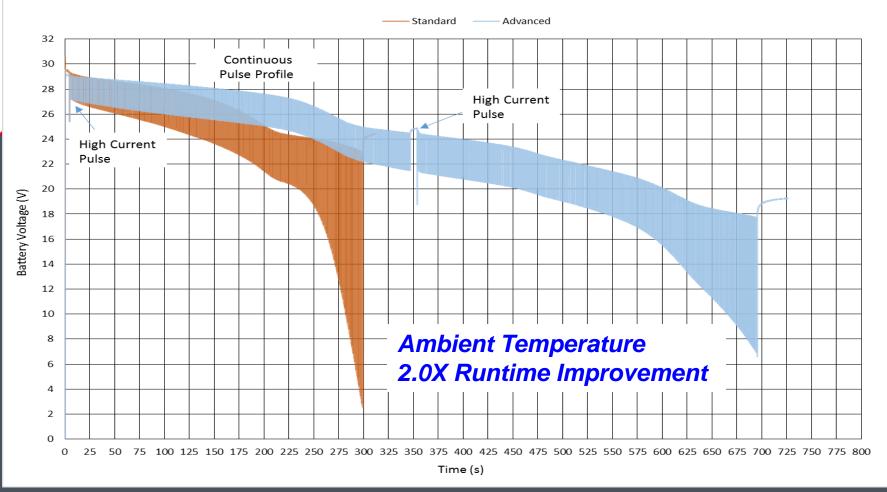

- High Quality Electrode Materials
- State-of-the-Art Electrochemistries
- Advanced Mechanical Designs
 - Designed for Ballistic Launch Survivability
 - Designed for Optimal Thermal Management
- State-of-the-Art Insulation Materials
- Automated Production
 - High Rate Production
 - Consistent Build Quality
 - Repeatable Performance

Extended range capability in efficient battery size.

EAS Advanced Thermal Battery Pulse Profile Test

Batteries Tested @ -45°F Constant

EAS

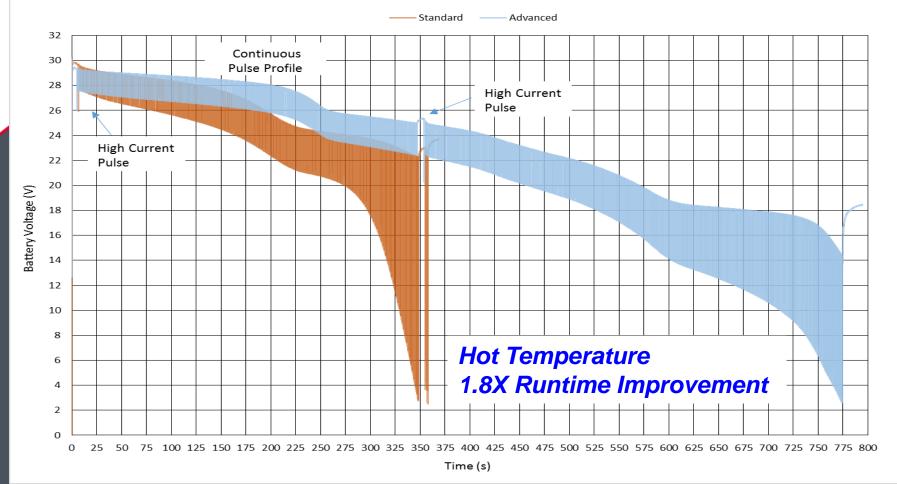

EAS's use of advanced materials, superior electrochemistry, and state-of-the art design resulted in 2.5X runtime improvement at cold temperature extreme.

EAS – Munitions

EAS

EAS – Munitions

EAS Advanced Thermal Battery Pulse Profile Test Batteries Tested @ Ambient



EAS's use of advanced materials, superior electrochemistry, and state-of-the art design resulted in 2.0X runtime improvement at ambient temperature.

EAS Advanced Thermal Battery Pulse Profile Test

Batteries Tested @ 145°F Constant

EAS

EAS's use of advanced materials, superior electrochemistry, and state-of-the art design resulted in 1.8X runtime improvement at hot temperature extreme.

EAS – Munitions

Ambient Temperature Batteries

Device Number Electrochemistry Size (in) Voltage (V) Current (mA) Activation Time(s) Run Time (s) Capacity (mAh) Weight (gm) Acceleration (G) Spin (RPS) Activation App. Activation Acc. (G) **Applications**

Su

Se

ub-munitions	30 mm
G3168B1	G3201B1
Li/SO ₂ Cl ₂	Li/SOCl ₂
.220 x .215	Ф.275 х .325
2.5 - 4.25	2.0 - 3.8
0.250	20
60.0	0.025
10 days	>30
2.0	1.5
0.6	.875
25,000.	100,000.
350	1,000.
Stab	Setback
N/A	50,000.
elf-Destruct	30 mm
Fuzing	Projectile
	Munitions

30 mm

Selected Cells

40 mm G3198B1 Li/SOCl₂ Φ.319 x .359 2.0 - 3.8 30 0.050 >30 3.13 1.25 100,000. 2,100. Stab N/A 40 mm Air-bursting Non-Lethal Munitions

25 mm

G3165D1

Li/SOCl₂

Φ.350 x .435

2.0 - 3.8

30

0.050

30

3.4

2.0

70,000.

2,100.

Setback

8.000.

20 mm

Projectile

Fuzing &

84mm

Munitions Artillery 40 mm G3207A1 G2666B1 G3147A1 Li/SOCl₂ Li/SOCl₂ Li/SOCl₂ Φ.450 x .395 Φ.500 x .840 Φ.500 x .840 2.5 - 3.6 2.0 - 3.8 2.5 - 3.6 50 0.5 0.5 0.050 0.5 0.8 30 10 days 15 days 5.2 230 280 2.0 5.1 6.2 25,000. 7.000. 30.000. 300. Low 500 Stab/Primer Stab/Primer Stab/Primer N/A N/A N/A Artillerv 40 mm Barrier **Munitions** Fuzing & Air Grenade **Munitions** Delivered Bombs

Rockets

EnerSys offers a wide range of state-of-the-art Reserve Lithium/Oxyhalide Cells for medium and large caliber projectile fuzing.

Ambient Temperature Batteries

Device Number Electrochemistry Size (in) Voltage (V) Current (mA) Activation Time(s) Run Time (s) Capacity (mAh) Weight (gm) Acceleration (G) Spin (RPS) Activation App. Activation Acc. (G) Applications

40 mm G3207B1 Li/SOCl₂ Φ.450 x 0.395 3.0 - 7.650 0.050 25 0.6 2.0 25,000. 300 Stab/Primer N/A 40 mm Grenade

Munitions

 $\begin{array}{c} \textbf{120 mm} \\ \text{G3153A2} \\ \text{Li/SOCI}_2 \\ \Phi 1.510 \times 1.255 \\ 20.0 - 40.0 \\ 750 \\ 0.025 \\ 10 \\ 20.0 \\ 110.0 \end{array}$

55.000.

Low

Setback

10,000.

120 mm Tank

Munitions.

ES&A Fuzing

Selected Batteries

120 mm G3153B1 Li/SOCl₂ Φ.880 x 1.280 25.0 - 40.0500 0.025 20 8.0 51.2 55.000. Low Setback 10.000. 120 mm Tank Munitions.

155 mm G3158B3 Li/SOCl₂ Φ1.500 x .670 5.6 - 12.0350 0.100 200 35 71.0 30.000. 500. Setback 1.500. 155 mm & 105 mm Artillerv Fuzing

Air Delivered

G3161A1

Li/SOCl₂

Φ1.500 x .670

5.6 - 12.0

350

0.100

200

35

57.0

30.000.

Low

Primer

N/A

Electronic

Fuzing.

Projectiles.

Bombs

Projectiles G3177A1 Li/SOCl₂ 1.517 x 2.674 5.5 - 7.536 2.0 14 days 350 80.0 12.600. Low Electric N/A Guidance. Data Hold Functions. Projectiles

EnerSys offers a wide range of state-of-the-art Reserve Lithium/Oxyhalide Batteries for medium and large caliber projectile fuzing.

ES&A Fuzing

Thermal Batteries

Device Number Electrochemistry Size (in) Voltage (V) Current (mA) Activation Time(s) Run Time (s) Capacity (mAh) Weight (gm) Acceleration (G) Spin (RPS) Activation App. Activation Acc. (G) Applications

Air Delivered

G3190B2 LiSi/FeS₂ Φ1.50 x 2.380 22.0 - 32.0 700 0.500 200 39 250.0 30,000. Low Electric N/A Air Delivered Weapons

Artillery

G3197A3 LiSi/FeS2 Ф2.00 x 2.70 23.8 - 34.0 5,000. 0.500 150 412 463.0 15,000. 30 Electric N/A 155 mm Artillery Fuzing

Selected Batteries

Artillery

G3200A1 LiSi/FeS₂ Φ1.515 x 1.905 5.0 - 8.4 750 0.500 200 39 190 30,000. 366. Setback 2,000. 155 mm Artillery Fuzing

Mortar G3202A1 LiSi/FeS₂ Φ1.00 x 1.436 11.0 - 23.011 W 0.500 65.5 20 80.0 11,000. 50 Electric N/A Electronic Fuzing. Projectiles,

Bombs

Missile

G3206A1

LiSi/FeS₂

3.00 x 3.50

24.0 - 35.0

800

1.0

1.050.

730

1.360.0

50.

Low

Electric

N/A

Missile

Electronics

105 mm

G3208A1 LiSi/FeS₂ Φ1.10 x 2.85 18.0 - 32.0 11 W 0.250 55 64 198.0 25,000. 300 Setback 2,000. 105 mm Artillery Fuzing

EnerSys offers machine produced Reserve Batteries for high volume applications such as medium and large caliber projectile fuzing.

<u>Summary</u>

- Several innovations were presented in the areas of electrochemistry and battery design that provide enhanced performance and capability for next generation electronic fuzing.
- Selected cells and batteries offering enhanced performance were discussed.
- EnerSys is a \$3.0 billion/year American company with munitions battery manufacturing facilities located in Horsham, Pennsylvania and Tampa, Florida.
- EAS has all of the physical assets and facilities required to: design, develop, manufacture, test, and analyze lithium batteries.
- Thank you for your attention.

EnerSys provides high energy density "lithium/oxyhalide batteries" and high power density "thermal batteries" as well as secondary "lithium ion batteries".