Naval Surface Warfare Center Dahlgren Division

Navy S&T Strategy

Presented by

Jason Koonts jason.koonts@navy.mil, 540-284-0179 **62nd NDIA Fuze Conference**

14th – 15th May, 2019

The Leader in Warfare Systems Development and Integration

NAVAL SURFACE WARFARE CENTER DAHLGREN DIVISION DAHLGREN | DAM NECK

NSWCDD/PN-19/178, DISTRIBUTION A: Approved for public release; distribution unlimited

- Navy Organizations
 - NSWC IHEODTD
 - NSWC DD
 - NAWCWD CL
- Navy Safety Overview
 - FISTRP
 - FESWG
- Navy Fuze R&D Highlights
- Conference Papers

Strategic Locations

NSWC IHEODTD Fuzing Overview

- Fuze safety architecture
- Distributed fuzing
- Firesets
- Underwater fuzes

- Torpedoes (e.g., Anti-Torpedo Torpedo)
- Mine/mine neutralization
- MEMS and energetics integration (explosively certified cleanroom)
- Energy harvesting
- Powerless environmental sensors
- Rapid prototyping/circuit board layout

NSWC IHEODTD Core Capabilities

Electrical Design and Test	 Electronic Safe Arm Devices (ESADs) Sensing technologies, imbedded systems, RF design 	
Initiation Systems Design and Test	 Micro-energetics Characterization (e.g., Photonic Doppler Velocimetry) 	
Mech. Design and Test	 Fuze packaging Full scale launch and impact testing Microelectromechanical Systems (MEMS) High G shock testing and survivability 	

NSWC Dahlgren

Located on the Potomac River, 60 miles south of DC

Core Fuzing Capabilities

DEVELOPMENT

- Gun-launched, conventional ammo fuzing
- S&A design
- Preparing specs and requirements
- Benchtop electronics testing
- CAD modeling and finite element analysis
- Rapid prototyping

QUALIFICATION

- Closed and open loop HWIL testing
- Execute and approve qualification testing
- Energetics and ballistic testing
- Extensive safety support with FISTRP representation

FLEET SUPPORT

- Direct communication with fleet
- Support various at-sea test events
- Respond to Conventional Ordnance Deficiency Reports (CODRs)
- Provide SME support/training

Potomac River Test Range

- 169 square miles of controlled water
 - Ballistic range of up to 20 nautical miles
 - Airspace clearance to 60,000 feet
- Fully instrumented network of range stations along VA shore of the Potomac River
- Over 2,300 acres of explosive ranges provide full spectrum of capabilities for live fire testing of energetics and directed energy systems
- Test range supports legacy, emergent, and "Navy after Next" programs
- Fuze test facility capable of:
 - S&A spin testing
 - Battery activation testing
 - Detonator time and explosive output testing
 - Fuze electronics testing
 - RF target simulation
 - Environmental testing

Design & Develop New Fuzing Concepts

- Rapid Prototyping (3D print or machined)
- FPGA development and logic analysis (up to 208 channel)
- ESADs, ISDs, FTSAs, Test Range Fire-sets

- Over 50 years of combined experience
- Program support from Production through Sustainment and Ordnance Assessment
- Respond to Conventional Ordnance Deficiency Reports (CODR) from the fleet

Fuze Testing Capabilities

- Environmental/Functional test sites to support Qualification, LAT, Ordnance Assessment(OA), Recertification, and experimental testing.
- Capability on-site to test AUR configurations with both multi-shaker underwing and 6DOF capabilities
- Full suite of Insensitive Munitions (IM) test facilities.

- Sled test capability

- WSESRB formed after 1968 fire aboard USS Forrestal (CV-59)
 - Investigation recommended independent review process be established
- NAVSEAINST 8020.6E
 - "...the WSESRB is the Navy's independent oversight for safety compliance of all DON military munitions..."
 - "The FISTRP reviews specific safety aspects requiring expertise in the area of design, analyses, and testing of fuzes, initiators, safe/arm devices and ignition systems contained in weapon systems."

- Formal Reviews
 - FISTRP will draft meeting notes and record action items
 - FISTRP chair briefs WSESRB, who formally release FISTRP findings to Program
 - SSSTRP has similar process for software reviews
- Technical Assists
 - Informal meetings
 - Treated as SME opinion from available FISTRP members
 - Program can record meeting minutes, which FISTRP will review

JOTPs MIL-STD-1316 STANAG 4187 MIL-STD-1901 STANAG 4368 MIL-STD-1911 STANAG 4497

- Panel Chair:
 - Gabriel Soto NAWCWD CL

- Panel Members:
 - Ralph Balestrieri IHEODTD
 - Tinya Coles-Cieply NOSSA
 - Michael Demmick NOSSA
 - Michael Haddon NAWCWD CL
 - Bradley Hanna NSWC DD
 - John Hughes NAWCWD CL

- John Kandell NAWCWD CL
- Jason Koonts NSWC DD
- Daniel Lanterman- IHEODTD
- Melissa Milani IHEODTD
- Adedayo Oyelowo IHEODTD
- Ciarra Villa NAWCWD CL

Fuze Engineering Standardization Working Group

- Chartered as a Joint Standardization Board (JSB) by the Defense Standardization Program (DSP)
 - Approaching the 100th meeting, originated in the 1970's
- Objective is to achieve common, mutually satisfactory solutions to shared requirements and problems

Chairperson

– Homesh Lalbahadur, US Army, Picatinny Arsenal, NJ

- Guidelines for evaluation of electronic safety and arming systems
- MIL-STD-1911B for hand-emplaced munitions
- MIL-STD-1901B for ignition safety devices
- Design requirements for remotely controlled safety, arming, and functioning (SAF) systems
- Safety design criteria for command and control of directed energy weapons
- Interface with NATO groups for international fuzing safety requirements

- Navy Fuze S&T Efforts
- ONR: High Reliability Dual-Purpose Improved Conventional Munition (DPICM) Replacement
- JFTP (Joint Fuze Technology Program)
 - Advance proximity sensing
 - Hard Target Survivability Modeling & Simulation, Testing, Encapsulation, Materials
 - MEMS and micro-explosive train reliability

Session 4A (Open)

 DoD MEMS Fuze Explosive Train Evaluation and Enhancement (8:00am-8:20am)

- David Muzzey, NSWC IHEODTD
- Session 4B (Closed)
 - Electrical Transmission Line Replacement for Det-Cords in Flight Termination Systems (8:20am-8:40am)
 - Dustin Atwood, NAWCWD CL)
 - EFI Fire Pulse Delay Circuit (10:40am-11:00am)
 - Michael Haddon, NAWCWD CL)

Session 5A (Open)

- Survivability and Reliability of Silicon MEMS Components (2:20pm-2:40pm)
 - Caitlyn May, NSWC IHEODTD
- Session 5B (Closed)
 - Small-Scale Testing of Electronic Components in Shock Loading (2:00pm-2:20pm)
 - Vasant Joshi, NSWC IHEODTD