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Overview

• Taking Teaming Seriously in Human-
Autonomy Teaming

• CHART Human-Autonomy Teaming 
Research
❖Complex Team Tasks
❖Testbeds/Synthetic Task Environments
❖Wizard of OZ

• In Depth: The Synthetic Teammate Project



Taking Teaming Seriously in Human 
Autonomy Teams

Team members 
have different 
roles and 
responsibilities –
do not replicate 
humans and their 
roles. Exceptions?



Taking Teaming Seriously in Human 
Autonomy Teams

Effective teams 
understand that each 
team member has 
different roles and 
responsibilities and 
avoid role confusion, 
but back each other 
up as necessary -
autonomy needs 
understanding of 
whole task. What 
does this mean?



Taking Teaming Seriously in Human 
Autonomy Teams

Effective teams 
share knowledge 
about the team 
goals and the 
current situation 
and this facilitates 
coordination and 
implicit 
communication –
human-autonomy 
team training?



Taking Teaming Seriously in Human 
Autonomy Teams

Effective teams have 
team members who 
are interdependent 
and thus need to 
interact/communicate 
even when direct 
communication is 
impossible– some 
other communication 
model than natural 
language?



Taking Teaming Seriously in Human 
Autonomy Teams

Interpersonal 
trust is important 
to human teams 
– autonomy 
needs to explain 
and be explicable. 
But how much 
and is that 
enough? Should it 
be trusted?



CHART 
Human-

Autonomy 
Teaming 
Research

❖Complex Team Tasks

❖Testbeds/Synthetic Task 
Environments

❖Wizard of OZ

❖Biometric Sensing



Team Cognition in Sociotechnical Systems

I study the cognitive processing of teams in 
the context of sociotechnical systems to 

improve team effectiveness



Action-Oriented Teams



Decision Making Teams



Human-Autonomy Teams

Human

Photographer

(PLO)

Synthetic Pilot 

(AVO)

Human 

Navigator

(DEMPC)



By Using Synthetic Task Environments, we 
bring the context into the lab
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Remotely Piloted Aircraft  
Systems– Synthetic Task 

Environment

Generic Team 
Decision Making 

Environment

Simulation of 
RPA Full 

Motion Video
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MEDIC Obstacle 
Course for Teams

Urban Search and 
Rescue Human Robot 

Interaction



Minecraft Testbed for Human-Robot 
Teaming for Urban Search and Rescue

• Minecraft simulates a collapsed building
• Wizard of OZ – robot on inside searches for victims and 

text chats with rescuer
• Human rescuer on outside who has map
• Task is to locate victims needing immediate assistance, 

mark them on the map and mark structural changes
• Manipulating type of explanation – human aware or 

not
• Measures

• Situation Awareness
• Trust
• Team Verbal Behaviors
• Workload
• Performance
• Demographics

WoZ allows human-autonomy teaming concerns to drive development of autonomy



CHARTopolis: A Testbed for Studying 
Driver Interaction with Autonomous 

Vehicles
• The testbed will leverage a fleet of  low-cost, 

modular robots used to conduct multi-agent 
experiments called Pheeno, provided by Dr. 
Berman’s Lab at ASU.

▪ Some vehicles will be autonomous and some remotely driven
▪ Human-driven cars will have to interact with the driverless cars
▪ Will be situated in a model urban setting

http://www.state.gov/video/?videoid=60761567001
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The Synthetic Teammate Project

Jerry Ball, Nancy Cooke, Mustafa Demir, Jamie Gorman, Craig Johnson, Nathan McNeese, Chris 
Myers, Steve Shope, Alex Wolff, Sophie He, Garrett Zabala



In our RPAS-STE three operators must 
coordinate over headsets or text chat to 
maneuver their RPA to take pictures of 

ground targets

RPAS Research 
Testbed

RPAS-STE:  
Remotely Piloted 
Aircraft System 
(ground control 

station) Synthetic 
Task Environment   



Air Vehicle Operator
controls RPA airspeed, 
heading, and altitude 
and monitors air vehicle 
systems

Payload Operator
controls camera 
settings, takes photos, 
and monitors camera 
systems

DEMPC 

navigator, mission 
planner, plans 
route from target 
to target under 
constraints

Interdependence requires interaction, 
communication, & coordination

Three team 
members 
with inter-
dependent 

tasks



Some Early Work with 3-Human 
Teams



Team Skill Acquisition
As teams acquire experience, performance improves, interactions improve, 

but not individual or collective knowledge
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• Individuals are trained to criterion prior to M1
• Team performance is a composite score based on how many targets they accurately 

process
• Asymptotic team performance after four 40-min missions (robust finding)
• Knowledge changes tend to occur in early learning (M1) and stabilize
• Process improves and communication becomes more standard over time

40-min missions
Spring Break



Team Retention & Composition
• 117 males(92) & females(25)  divided into 39  

3-person (unfamiliar) Session 2 teams

• Two between subjects conditions (retention 
interval and familiarity) randomly assigned 
with scheduling constraints

• Participants randomly assigned to one of 
three roles

• Session 1: 5 40-min missions

• Session 2: 3 40-min missions

10 Teams10 Teams

9 Teams10 Teams

3-5 weeks 10-13 weeks
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Same Condition

Session 1 Session 2 

Retention

Interval

AVO PLO DEMPC AVO PLO DEMPC



Team Retention and Composition
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All but Short-Intact teams suffer performance loss after the break



But a different story for Team Process…
Team Process improves for mixed, but not intact 

teams after the break. 
This is unexpected and supports Interactive Team Cogntiion

(There were no changes in knowledge after the break)
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* Result also supported in mission planning testbed – change roles vs. seats



Interactive Team Cognition

Team interactions often in the form of explicit 
communications are the foundation of team 
cognition

ASSUMPTIONS

1) Team cognition is an activity; not a property or product

2) Team cognition is inextricably tied to context

3) Team cognition is best measured and studied when the 
team is the unit of analysis

Cooke, N. J., Gorman, J. C., Myers, C. W., & Duran, J.L. (2013).  Interactive Team Cognition, Cognitive Science, 37, 
255-285, DOI: 10.1111/cogs.12009.
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Autonomous agent as a 
collaborator on a heterogeneous 
team (role and nature of agent) 
that operates a Remotely Piloted 
Aircraft to take reconnaissance 
photos
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Autonomous agent as a 
collaborator on a heterogeneous 
team (role and nature of agent) 
that operates a Remotely Piloted 
Aircraft to take reconnaissance 
photos

automation



28

Autonomous agent as a collaborator on 
a heterogeneous team (role and nature 
of agent) that operates a Remotely 
Piloted Aircraft to take reconnaissance 
photos

autonomy



IMPLICATIONS OF INTERACTIVE TEAM COGNITION FOR 
SYNTHETIC TEAMMATE

1) Interaction goes beyond language understanding and generation

2) Coordination is central to this task – timely and adaptive passing of 

information among team members

3) Humans display sometimes subtle coordination behaviors that may be 

absent in the synthetic teammate

4) Failures of synthetic teammate will highlight the requisite coordination 

behaviors
29



The Synthetic Teammate

• Cognitively plausible agents capable of 
performing complex tasks & interacting with 
human teammates in natural language

• Effective team training any time anywhere, in 
DoD relevant, complex, dynamic environments

• Facilitate transition to new DoD applications

Take cognitive modeling to the level of functional 

systems



• The largest cognitive model built in ACT-R

− 2459 Productions

− 57,949 Declarative Memory chunks

• Among the largest cognitive models built in any cognitive 

architecture

− 5 major components

• By computer science standards, a large program



SYNTHETIC TEAMMATE DEMO SYSTEM

Synthetic

Teammate

(Pilot)

CERTT 

Consoles:

Navigator

Photographer

Pilot

Text Messaging

Subsystem

WPAFB  Dayton, OH
32



THE SYNTHETIC TEAMMATE COMMUNICATES WITH
HUMANS

33

Sender Sent Message

DEMPC 517.22 the speed restriction for f-area is from 150 to 200.

PLO 530.16 good photo.  go on.

PLO 572.02 go to next waypoint.

DEMPC 633.1 the next waypoint is prk. it is entry.

AVO 736.63 What is the effective radius for oak?

AVO 747.35 What is the next point after prk?

DEMPC 768.78 no effective radius for oak.

DEMPC 803.77 the next waypoint is s-ste. it is target. the altitude restriction 

is from 3000 to 3100.

AVO 843.41 What is the next point after s-ste?

DEMPC 924.9 the speed restriction for s-ste is from 300 to 350. 

DEMPC 982.94 the next waypoint is m-ste. it is target.

DEMPC 1123.08 the next waypoint is m-ste.
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SYNTHETIC TEAMMATE VALIDATION EXPERIMENT

Purpose: Compare synthetic teammate teams to all-human 

control teams and to an all-human team with an experienced 

AVO (Experimenter)

Method

Participants: 30 3-agent teams, 

10 team per condition

Conditions
• Synthetic

• AVO is ACT-R based cognitive model

• Less expertise than experimenter

• Control 

• AVO is participant

• Experimenter

• AVO is experimenter (experienced AVO)

• Pushes and pulls information across team using a coordination script

Human

Photographer

(PLO)

Synthetic 

Pilot (AVO)

Human 

Navigator

(DEMPC)
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SYNTHETIC TEAMMATE VALIDATION EXPERIMENT

Procedure

Measures
• Team performance

• Team process (process ratings, communication flow, coordination, 

situation awareness, verbal behavior)

• Workload, NASA TLX



RESULTS:  TEAM PERFORMANCE

Experimenter teams demonstrated superior team performance compared to 

the control and synthetic teams which were statistically equivalent. 

36

Synthetic = Control < Experimenter



RESULTS: TARGET PROCESSING EFFICIENCY 
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Synthetic < Control < Experimenter

Target processing efficiency was poorer for Synthetic teams than Control teams 

which was poorer than the Experimenter teams; and the Synthetic teams’ 

processing efficiency declined over time.



RESULTS: VERBAL BEHAVIORS OF SYNTHETIC VS. HUMAN 

PILOTS

The Synthetic pilot demonstrates different verbal behaviors compared to 

Control and Experimenter pilots (fewer status updates, positive 

communications, inquiries).  Also Synthetic teams had fewer general status 

updates and more repeated requests for information.  More pulling than 

pushing of information. 38



Team coordination: three key communication events at each 

target waypoint, Information-Negotiation-Feedback (INF), is 

captured by a Kappa Score (к) (Gorman, Amazeen, & Cooke, 2010)

RESULTS:  COORDINATION

DEMPC/ 

Navigator 
TEXT 

COMMUNICATION

Pilot/ 

AVO

Synthetic

INFORMATION

PLO/ 

Photographer



RESULTS:  ATTRACTOR RECONSTRUCTION

• Attractor reconstruction was used to visualize

team coordination dynamics

• Recover a system’s dynamical structure from a

one-dimensional Kappa time series and time-

delayed versions of the Kappa.

From Demir dissertation 4/2017



RESULTS:  SYNTHETIC TEAMS MORE STABLE THAN OTHERS

(λsyn= - 0.04) (λcont= 0.02) 

(λexp= 0.05)

К(i)
К(i)

К(i)

К(i+τ)

К(i+τ)

К(i+τ)

К
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+
2
τ)

К
(i

+
2
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К
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Stability (λ) is inversely related 

to the largest Lyapunov 

Exponent - estimated from 

Kappa; Stability (λ<0) and 

instability (λ>0) of team 

coordination 

Sample Reconstructed attractors from three teams: a three-dimensional phase space as 
coordinates for the three-dimensional space [к 𝑖 , к(i+τ), к(i+2τ)]
From Demir dissertation 4/2017



RESULTS: SYNTHETIC TEAMS MORE STABLE THAN OTHERS

Mean largest Lyapunov exponents = Stability across the conditions 

(vertical lines indicate SE) synthetic < control = experimenter

From Demir dissertation 4/2017

Stability

Instability



RESULTS:  JOINT RECURRENCE QUANTIFICATION ANALYSIS 
(JRQA)

JRQA was used to assess joint influence of one

team member on the other

• JRQA was applied on communication flow data (i.e., 

sent time stamp from each UAV mission)

• % Determinism (DET): measure of system’s 

predictability was extracted from JRQA 

From Demir dissertation 4/2017



RESULTS:  SYNTHETIC TEAMS MOST STABLE/PREDICTABLE AND 
CONTROL LEAST

Mean % DET = Predictability across the conditions 

(vertical lines indicate SE) synthetic > control < experimenter
From Demir dissertation 4/2017

Less Predictable

More Predictable



RELATION BETWEEN TEAM PERFORMANCE AND 
COORDINATION

From Demir dissertation 4/2017; Coordination stability “sweet spot” discovered



SYNTHETIC TEAMMATE VALIDATION RESULTS

❖The synthetic teams performed as well as control 
teams, but had difficulties coordinating and 
processing targets efficiently – failure to anticipate

❖A synthetic teammate can impact team 
coordination and performance - entrainment

❖Experimenter condition demonstrates how a 
teammate who excels at coordination can elevate 
coordination of the whole team

❖Conditions were nominal.  Coordination especially 
important in off-nominal conditions.

46



Results: Target Processing Efficiency 
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Synthetic < Control < Experimenter

Target processing efficiency was poorer for Synthetic teams than Control teams 

which was poorer than the Experimenter teams; and the Synthetic teams’ 

processing efficiency declined over time.

Not only provides assessment of the synthetic teammate 
(along with weaknesses), but also demonstrates how 
subtle coaching of coordination can improve team 
performance.



Applying Coordination Coaching to Code 
Blue Resuscitation

Sandra Hinski (2017) dissertation, ASU



Intensivist code leaders studied 
communication model for 5-10 min. 

prior to mock code
Arrival to code Introduces self as code team leader

Contingency
IF: Code RN does not immediately give the CTL a brief history, code status, and 
confirm advanced monitoring is established 
THEN: CTL must directly ask the Code RN for the information

Within 30 
seconds of arrival 
to code

Asks about ABCs
IF: No one person is performing CPR or performing bag mask ventilating upon 
arrival of CTL
THEN: CTL must direct code team member to immediately perform CPR and 
the RT to bag the patient

Once monitoring 
is established

Asks for ACLS therapies as indicated
IF: Medication or shock delivery is delayed more than 10 seconds after 
identification of rhythm 
THEN: CTL must directly as pharmacist or RN do deliver the meds and/or shock

*constant 
feedback*

Asks if there are any problems, so CTL can troubleshoot or delegate task to 
another person, keeps team on task, should be in SBAR format

Contingency

IF: Code team does not clarifies ROSC/stabilization of ABCs OR clinical 
worsening
THEN: CTL must clarify disposition (i.e. transfer to ICU, need for more 
advanced therapies, discontinuation of efforts, etc.)



Code Team Errors

0
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CTL did not identify
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CTL not positioned
properly

First shock delayed ECG rhythm not
verbalized

Medication dose and
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Human

Photographer

(PLO)

WoZ

Experimenter –

Synthetic 

Teammate 

Pilot (AVO)

Human 

Navigator

(DEMPC)
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Human-Autonomy Teaming 

Under Degraded Conditions

Purpose: Identify challenges of human-autonomy teaming under degraded 

conditions and strategies of high performing teams to address them.

Method

Wizard of Oz Paradigm: synthetic pilot was 

mimicked by an experienced (remote) 

experimenter who failed in specific ways at 

specific times  

Participants: 21 3-agent teams

10 Missions (with multiple targets) across 

two sessions
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Human-Autonomy Teaming Under Degraded 

Conditions

Procedure (Two Sessions separated by 1-2 week interval)

Measures
• Team performance (mission and target levels)
• Team process (process ratings, communication flow, coordination, situation awareness, 

verbal behavior)
• Team trust & resilience
• Workload (NASA TLX)
• Anthropomorphism
• Heart Rate (ECG), Electrical Activity of the Brain (EEG), & Facial Expression 

SESSION-I (with breaks
Total: 6 hours) 

SESSION-II (with breaks 
Total: 7 hours)

1) Consent forms (15 min) 1) Mission 5 (40 min), 

2) PowerPoint (30 min) and hands on training 
(30 min)

2) NASA TLX I (15 min)

3) Mission1 (40 min) 3) Mission 6 (40 min), 
4) NASA TLX I (15 min) 4) Mission 7 (40 min), 
5) Missions 2 (40 min) 5) Mission 8 (40 min),
6) Mission 3 (40 min), 6) Mission 9 (40 min), 
7) Mission 4 (40 min), 7) Mission 10 (40 min),

8) NASA TLX-II, Trust & Anthropomorphism
(30 min)

8) NASA TLX-II, Trust, Anthropomorphism, 
Demographics, and Debriefing (30 min)

9) Post-Check Procedure (15 min)



Human-Autonomy Teaming Under Degraded 
Conditions

53

➢Automation Failures – display fails

➢Autonomy Failures – synthetic 

teammate comprehension failure

➢Malicious Attacks on Autonomy 

provides appropriate feedback as it 

enters wrong area

Synthetic 

Pilot

Synthetic 

Pilot
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Human-Autonomy Teaming Under Degraded 

Conditions

Experimental Sessions and Application of Failures during specific targets for each mission

Target/ 

Automation

Target/ 

Autonomy

Target/ 

Malicious

Se
ss

io
n

 I

Training No Failure No Failure No Failure

Mission 1 No Failure No Failure No Failure

Mission 2 2nd/ Type I 4th/ Type I No Failure

Mission 3 4th/ Type II 2nd/ Type II No Failure

Mission 4 1st/ Type III 3rd/ Type III No Failure

Se
ss

io
n

 II

Mission 5 2nd/Type III 4th/ Type II No Failure

Mission 6 4th/ Type I 2nd/ Type I No Failure

Mission 7 1st/ Type II 3rd/ Type II No Failure

Mission 8 3rd/Type III 1st/ Type III No Failure

Mission 9 3rd/Type II 5th/ Type II No Failure

Mission 10 2nd/Type III 4th/ Type III Last 10 min



RESULTS: OVERCOMING FAILURES AND 
ATTACKS

55

Automation & Autonomy Failures, and Malicious 
Attacks

• Proportion of 22 teams that overcame failures was 
approximately equal for both types: automation (65%) 
and autonomy (64%), and malicious attacks (41%)

• Performance of overcoming automation failures
increased across the missions, but decreased for 
autonomy failures



RESULTS: TEAM PERFOMANCE
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Team Performance (Mission Level)

Team performance increased across the missions.



Clusters Based on Performance

57

Metrics\ Conditions
High-

Performed
Average

Low-
Performed

Number of Teams 6 8 6

• Identify high vs. low performing teams
• Team clusters via K-Means Cluster analysis
• Data

• Mission performance score
• Target performance score
• Number of failures overcome

• Resulted in 3 groups of teams 



RESULTS:  TARGET PROCESS RATING

High-performing teams demonstrated superior team process compared to the 
average and low teams which were statistically equivalent. 
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Low = Average < High Performed Teams



RESULTS: NASA TLX WORKLOAD

59

High-performed = Low >  Average-performed teams

The average teams had lower workload than the low- and high-performing teams; and  the 
photographer had lower workload than the navigator.



RESULTS:  TRUST 

1) lower levels of trust in the autonomous agent in low 

performing teams than both medium and high performing 

teams

2) there is a loss of trust in the autonomous agent across low, 

medium, and high performing teams over time

3) both low and medium performing teams also indicated lower 

levels of trust in their human team members 

60



Coordination Dynamics Under Degraded 
Conditions

• These analyses utilize database files that contain timestamped 
information of vehicle, controls, and communication state 
throughout a mission
– Layered dynamics – visualizing and tracking changes in how the system 

(RPAS) is organized over time

– Deep dive – content analysis of mission chat transcripts to understand 
how the humans and autonomy dealt with automation failures and 
how the humans dealt with autonomy failures



Chat Event Symbol

AVO-->PLO and DEM 1

AVO-->PLO 11

AVO-->DEM 111

PLO-->AVO and DEM 4.5

PLO-->AVO 22

PLO-->DEM 222

DEM-->AVO and PLO 3

DEM-->AVO 33

DEM-->PLO 334

[…0, 0, 111, 111, 111, 111, 44, 44, 44, 33, 33, 0, 0…] 

AVO→DEM

AVO→PLO + DEM→AVO

DEM→AVONULL

A. Input Database

Example Snippet of a Symbolic Time Series (1Hz)

B. 

Symbol 

Encoding

C. Calculate moving window 

entropy of symbolic time 

series

Layered dynamics

• Windowed entropy measures the number of arrangements a 

system occupies over a fixed amount of time.

• Entropy is one operational definition of system reorganization 

(others are %DET and %REC).



Fuel

Battery

Film

Temperature

Left Turn

Right Turn

Warning/Alarm

Altitude

Airspeed
Climbing

Descending
Accelerating
Decelerating
Flaps Position
Gear Position

X Location
Y Location

Set Shutter Speed

Set Focus

Set Camera Type

Set Aperture

Set Zoom

Check Required Settings

Charge Battery

Reset Lens

Reset Temperature

Take Photo

Accept Photo

Change Current Route

Send Route Plan

Request Flight Plan

New Queued Waypoint

New To Waypoint

Set Center of Gravity

Set Airspeed

Set Altitude

Refuel

AVO-->PLO and DEM

AVO-->PLO

AVO-->DEM

PLO-->AVO and DEM

PLO-->AVO

PLO-->DEM

DEM-->AVO and PLO

DEM-->AVO

DEM-->PLO

Vehicle

Controls

Communications

Time

Layered dynamics

Different layers for visualizing and tracking where 

failures are addressed in the system



Layered Dynamics
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A – automation failure     B – autonomy failure     C – malicious attack on autonomy
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Effective teams tend to:
• Autonomy failures

• Short reorganization time in the Controls/Vehicle layers (p < .05)
• Automation failures

• Long reorganization time in the Communication layer (p < .05)

Effective = successfully overcoming failures

Reorganization time – time from failure onset to peak significant 

system reorganization



For building resilient teams, intervention(s) may be 
developed around the core concepts of locus of 

resilience and loci of reorganization

Resilience to Failures

Interaction-based Role-related

Adaptivity Consistency/Persistence

Interactive Team Cognition I/O, Social Psychology

CAST Trust, Anthrop., Demo’s

Communication/Interaction Traits, Dispositions, Attitudes

Behavioral Qualities

Locus of Resilience

Theoretical Underpinning

Measures

Mechanism(s)

Automation 

Failures

Autonomy 

Failures

D
im

e
n
s
io

n
s

Summary: What we Have Found from the 
Dynamics Thus Far



Human-Autonomy Teaming Under 
Degraded Conditions

• High performing teams exhibit superior process 
behaviors, and also higher workload

• Trust in autonomous agent declines over time with 
increasing failures and is especially low for low 
performing teams

• Response to failures in automation requires team 
coordination

• Response to failures in autonomy may be more linked to 
attitude and trust

• Next study will test an intervention to improve response 
to failures



• Outcome can be measured in the lab because we know 
ground truth

• Outside of the lab, there is often no ground truth (cyber, 
intelligence, RPAS, USAR) 

• Often team performance is measured as outcome
• In the lab effective teams have positive outcomes 
• Outside the lab there is no obvious outcome (science 

teams) or outcome ≠ effectiveness (Code Blue 
Resuscitation, sports)

Next Steps:  Taking Team Performance 
Measurement Out of the Lab



Outcome vs. Effectiveness



Measuring Team Effectiveness

What is team effectiveness?

– Adaptivity:  Teams respond quickly to a 
perturbation

– Resilience:  Teams bounce back quickly from a 
perturbation

Measure Team 
effectiveness 
through 
performance
dynamics SAME                              MIXED

Effective teams are adaptive and stable



Dynamics and Team Effectiveness
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