

CEDARS: COMBINED EXPLORATORY DATA ANALYSIS RECOMMENDER SYSTEM

Mark A. Livingston¹, Stephen Russell², Jonathan W. Decker¹, and Antonio Gilliam³

¹Naval Research Laboratory ²Army Research Laboratory ³Strategic Analysis, Inc.

Aberdeen, MD16-17 April 20192019 NDIA Human Systems Conference

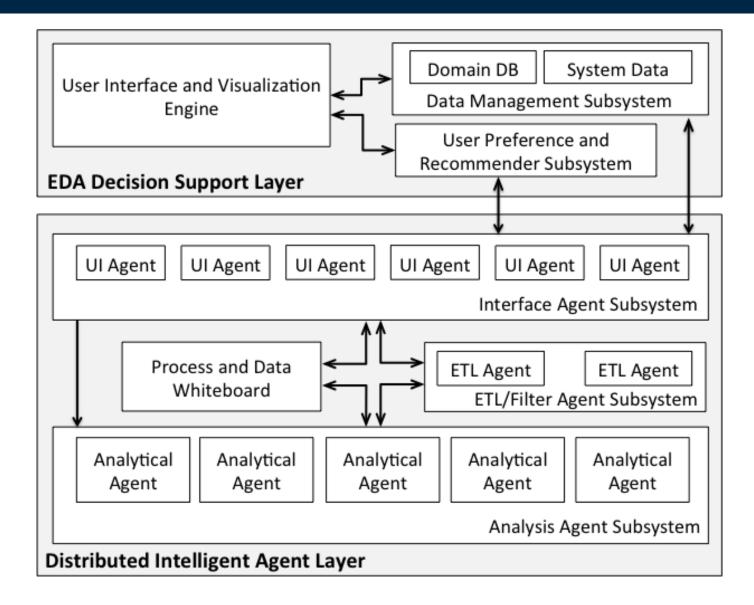
- Capture a domain expert's approaches for data analysis
- Be able to intelligently recommend or automatically apply these approaches to future analyses (by the same or other analysts)
- Automate analysis of complex data sets
- Help novice analysts increase their expertise
- Assist domain experts in creative exploratory analysis
- Unify architectures for EDA with systems to automate layout and (ultimately) visual representation

Why use Recommender System (RS)?

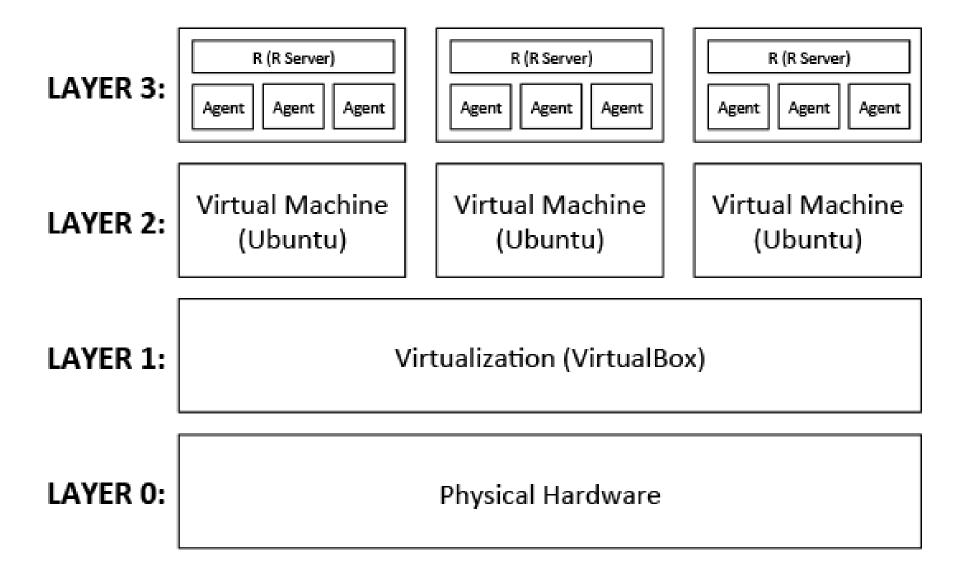
- Data analyst's questions: what data should I explore? what analytics should I apply?
 - Transform: 'What items are relevant?' 'What services complement those items?'
- Selecting analytic operations can be cumbersome
- Analyst may overlook appropriate operations due to familiarity bias
- Enhance creativity under ambiguity and uncertainty, which is often an element of exploratory data analysis (EDA)

- Confirmatory analysis is "easy to computerize" [Tukey]
- Common tasks where RS provide benefit [Herlocker et al.]
 - Find some good items
 - Annotation in context (emphasize items based on user preference)
 - Recommend a sequence
 - Recommend a bundle
 - Help with browsing
 - Improve the profile by integrating user preference into the decision making task

Adaptive EDA

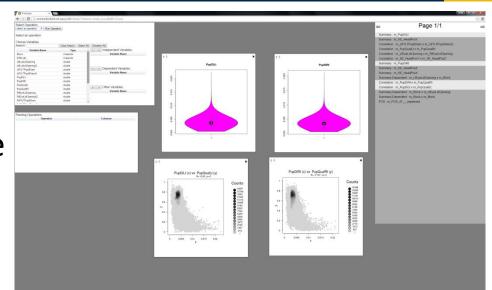

- ForceSPIRE [Endert et al.]
 - Adjusts layout by changing weights via capturing semantics of user interaction
- [Petasis et al.]
 - Use C4.5 decision tree algorithm to discover need to update rules in recognition and classification of named entities in text corpora

RS in Workflows


- Optimize hyperparameters
 - Improved prediction in retail applications [Chan et al.]
 - Improved recommendations by combining machine learning with rules [Bergstra&Bengio]
- Inference & logic
 - Contextually-aware RS [Adomavicius& Jannach]

CEDARS attempts to bridge gap between adaptive EDA and RS in workflows.

- Django web framework with Python scripts to ingest data
- Stores data in MongoDB
- Passes interest values (recommendation) to agents
- Agents use R for statistical computation
- EDA layer collects data from processing agents as plain text, parsed and loaded into Django
- User interface accesses local Django server with web browser



- Study of image metrics on multivariate visualizations
 - Do the image metrics offer insight into user performance?
 - Approximately 600 measures
 - Recommendations
 - Summary statistics
 - Requested F-tests
 - Non-requested F-tests
 - visualization technique on edge strength (Sobel) showed difference (target versus distractions)

- Data from eye tracking, mostly unexplored
- Initial recommendations are for summaries of variables
 - Similarity in the distributions of two variables led to the discovery of data error

- Concern with pupil diameter measurements led to summaries, correlations, and repeated-measures ANOVAs involving those variables
- Helped identify a need for more restrictive outlier removal threshold

- Series of five human participant studies; goal was explore connections between the analysis (workflow) for data sets
- First data set: cold start, so defaults to summary statistics
 - User selects dependent variables of interest
 - CEDARS displays group means; some are of interest
 - CEDARS follows with ANOVA, then t-tests (independent variables)
- Second set: much the same with better ranking
 - User selects dependent variables, gets group means by selected variables, and user selects results of interest
 - Invokes some rules on the first data set where variables names are the same and leads to new recommendations
 - CEDARS invoked some rules using SubjectID, and user sees that one subject was error-prone and fast

- Third set: Summary operations, group means, ANOVA
 Not much of interest found
- Fourth set: Summary operations, group means, ANOVA
 - New variable is explicitly requested through summary statistics
 - Fifth set: Summary operations, group means, ANOVA
 - Two new variables requested through summary statistics
 - Reclassified from numeric to factor (a standard operation in R)
 - CEDARS begins to recommend multi-factor ANOVA operations
 - CEDARS applies type change to variables with same name in fourth data set

- CEDARS can replicate standard analytical practice and provide deep analysis by recommending operations on variables a domain expert had not thought to test
- CEDARS can replicate analysis applied to one data set to another with similar structure or shared names
 - Can be invoked "forward" on new data or "backward" on data in memory
- Ultimate goal of EDA: tell the story that explains the data
- CEDARS can potentially
 - Capture expertise of domain expert and data scientist
 - Use that expertise to guide novices
 - Remind experts of forgotten analytical options
 - Promote adoption of novel analysis methods
 - Unify architectures for automating layout or visual representation
- Future: more data and evaluate recommendations across data sets

- CEDARS: Combined Exploratory Data Analysis
 Recommender System technical report (forthcoming)
- Mark.Livingston@nrl.navy.mil
- https://www.nrl.navy.mil/itd/imda/research/5581/ visual-analytics-and-visualization