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◼ Capture a domain expert’s approaches for data analysis

◼ Be able to intelligently recommend or automatically apply 
these approaches to future analyses (by the same or other 
analysts)

◼ Automate analysis of complex data sets

◼ Help novice analysts increase their expertise

◼ Assist domain experts in creative exploratory analysis

◼ Unify architectures for EDA with systems to automate 
layout and (ultimately) visual representation

Goal
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◼ Data analyst’s questions: what data should I explore? what 
analytics should I apply?

◼ Transform: ‘What items are relevant?’  ‘What services 
complement those items?’

◼ Selecting analytic operations can be cumbersome

◼ Analyst may overlook appropriate operations due to 
familiarity bias

◼ Enhance creativity under ambiguity and uncertainty, which 
is often an element of exploratory data analysis (EDA)

Why use Recommender System (RS)?
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◼ Confirmatory analysis is “easy to computerize” [Tukey]

◼ Common tasks where RS provide benefit [Herlocker et al.]

◼ Find some good items

◼ Annotation in context (emphasize items based on user preference)

◼ Recommend a sequence

◼ Recommend a bundle

◼ Help with browsing

◼ Improve the profile by integrating user preference into the 
decision making task

Why use RS for EDA?
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◼ ForceSPIRE [Endert et al.]

◼ Adjusts layout by changing 
weights via capturing 
semantics of user interaction

◼ [Petasis et al.]

◼ Use C4.5 decision tree 
algorithm to discover need to 
update rules in recognition 
and classification of named 
entities in text corpora

◼ Optimize hyperparameters

◼ Improved prediction in retail 
applications [Chan et al.]

◼ Improved recommendations 
by combining machine 
learning with rules 
[Bergstra&Bengio]

◼ Inference & logic

◼ Contextually-aware RS 
[Adomavicius& Jannach]

Adaptive EDA RS in Workflows

Previous Work

CEDARS attempts to bridge gap between adaptive EDA and RS in workflows.
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System Architecture
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System Architecture
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◼ Django web framework with Python scripts to ingest data

◼ Stores data in MongoDB

◼ Passes interest values (recommendation) to agents

◼ Agents use R for statistical computation

◼ EDA layer collects data from processing agents as plain 
text, parsed and loaded into Django

◼ User interface accesses local Django server with web 
browser

Data Organization
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◼ Study of image metrics on 
multivariate visualizations

◼ Do the image metrics offer 
insight into user performance?

◼ Approximately 600 measures

◼ Recommendations

◼ Summary statistics

◼ Requested F-tests

◼ Non-requested F-tests

 visualization technique on
edge strength (Sobel) showed
difference (target versus
distractions)

Use Case 1
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◼ Data from eye tracking, 
mostly unexplored

◼ Initial recommendations are 
for summaries of variables

◼ Similarity in the distributions
of two variables led to the
discovery of data error
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Use Case 2

◼ Concern with pupil diameter measurements led to
summaries, correlations, and repeated-measures 
ANOVAs involving those variables

◼ Helped identify a need for more restrictive outlier removal 
threshold



◼ Series of five human participant studies; goal was explore 
connections between the analysis (workflow) for data sets

◼ First data set: cold start, so defaults to summary statistics

◼ User selects dependent variables of interest

◼ CEDARS displays group means; some are of interest

◼ CEDARS follows with ANOVA, then t-tests (independent variables)

◼ Second set: much the same with better ranking

◼ User selects dependent variables, gets group means by selected 
variables, and user selects results of interest

◼ Invokes some rules on the first data set where variables names are 
the same and leads to new recommendations

◼ CEDARS invoked some rules using SubjectID, and user sees that 
one subject was error-prone and fast
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Use Case 3



◼ Third set: Summary operations, group means, ANOVA

◼ Not much of interest found

◼ Fourth set: Summary operations, group means, ANOVA

◼ New variable is explicitly requested through summary statistics

◼ Fifth set: Summary operations, group means, ANOVA

◼ Two new variables requested through summary statistics

◼ Reclassified from numeric to factor (a standard operation in R)

◼ CEDARS begins to recommend multi-factor ANOVA operations

◼ CEDARS applies type change to variables with same name in 
fourth data set
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Use Case 3



◼ CEDARS can replicate standard analytical practice and provide deep 
analysis by recommending operations on variables a domain expert 
had not thought to test

◼ CEDARS can replicate analysis applied to one data set to another 
with similar structure or shared names

◼ Can be invoked “forward” on new data or “backward” on data in memory

◼ Ultimate goal of EDA: tell the story that explains the data

◼ CEDARS can potentially

◼ Capture expertise of domain expert and data scientist

◼ Use that expertise to guide novices

◼ Remind experts of forgotten analytical options

◼ Promote adoption of novel analysis methods

◼ Unify architectures for automating layout or visual representation

◼ Future: more data and evaluate recommendations across data sets
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Conclusions & Future Work



◼ CEDARS: Combined Exploratory Data Analysis 
Recommender System technical report (forthcoming)

◼ Mark.Livingston@nrl.navy.mil

◼ https://www.nrl.navy.mil/itd/imda/research/5581/
visual-analytics-and-visualization
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Thank you!


