Hypersonic Flight: A Status Report

Dr. Mark J. Lewis Science & Technology Policy Institute

July 30, 2019

Hypersonics is More Than Weaponsbut that's what we'll start with

Hypersonic Flight is Really Hard

- Project Bumper: first hypersonic vehicle
 - WAC Corporal/V2 twostage rocket
 - Program initiated Feb 1946, first flight May 1948
 - Flights 1-4 failed
 - Flight 6 failed
 - Flight 8 & 7 from the Cape
- Flight 5: Mach 6.7 on
 February 1949, fifth flight
- 50% flight success rate holds today

And Sometimes We Made it Harder Than it Has to Be: X-30 NASP 1986

- DRAG LEVEL VERIFIED
 - NASA WIND TUNNEL TESTS
 - BOEING SUPPLIED MODEL

ACCELERATION ENGINE

- U.S. PATENT ISSUED TO A. duPONT
- PERFORMANCE VERIFIED BY GASL AND PW TESTS

And Sometimes We Made it Harder Than it Has to Be: X-30 NASP 1993

At program cancellation

Hypersonic Flight is Also Often Easier Than We Thought

- Development of hypersonic boundary layer theory (1950's)
- Lees, et. al. modeling as a complicated, merged thin shock
 & boundary layer
- Epiphany: the shockwave cannot be the top of the boundary layer, so there is a separate boundary layer
- Bertram and Blackstock, Chapman and Rubesin developed simple similarity approaches

X-43A Proved Scramjets Work

Cruiser length: 145 inches \$230 million

Weight: 3000 lbs 10 second flights

Fuel: hydrogen Flew 2004

"It's not that hard..."

Randy Voland, Nov 2004

8/22/2019 1:55 PM SOURCE: NASA DRYDEN

First Scramjet flights: NASA X-43 and USAF X-51

We Have Learned: Key Unknowns ca. 1989

- Scramjet operation at any Mach number, up to 18-25
- Surviving an engine unstart
- •Fuel injection and mixing up the Mach scale
- Leading edge heating including shock-shock interactions
- Boundary layer transition and heating
- Inlet distortion and efficiency
- Controllability with integrated propulsion
- High L/D integrated aerodynamics
- Inlet design and performance, 2-D vs 3-D
- Aeroelasticity?

Significant Progress Made ca. 2019

- Scramjet operation at any Mach number, up to 18-25 (yes to Mach 10)
- Surviving an engine unstart (yes, done it)
- Fuel injection and mixing up the Mach scale (yes, done it)
- Leading edge heating including shock-shock interactions (yes)
- Boundary layer transition and heating (work in progress)
- Inlet distortion and efficiency (yes, more to do)
- Controllability with integrated propulsion (yes, done it)
- High L/D integrated aerodynamics (yes, but always more to do)
- Inlet design and performance, 2-D vs 3-D (yes, 3-D)
- Aeroelasticity progress, but ongoing

"This Time It's Different"

Deputy PM Repeats Call For Hypersonic Bomber

MILITARY & INTELLIGENCE 18:00 27.08.2012 Get short URL

= 0 **O** 5 **i** 0 **!** 0

Russian Deputy Prime Minister Dmitry Rogozin repeated his appeal on Monday for Russia to develop a hypersonic aircraft for its PAK-DA longrange bomber requirement.

Russian Deputy Prime Minister Dmitry Rogozin repeated his appeal on Monday for Russia to develop a hypersonic aircraft for its PAK-DA long-range bomber requirement.

III think we need to so down the south of hypersonic technology and we are maying in

ASIA DEFENSE

China Tests New Weapon Capable of Breaching US Missile Defense Systems

Beijing has successfully tested a new hypersonic missile.

By Franz-Stefan Gady April 28, 2016

766 Shares

Last week, China has yet again successfully tested the elopmental DF-ZF (previously known as WU-14) hypersonic e vehicle (HGV), Bill Gertz over at The Washington Free Beacon

test of the high-speed maneuvering warhead took place at the zhai missile test center in central China's Shanxi Province, some miles (400 kilometers) southwest of Beijing.

e maneuvering glider, traveling at several thousand miles per hour, osphere to an impact area in the western part of the country," Gertz

ICOCO HISPCIOUNIC

Weapon System

The superweapon travels at an eye-watering 7,000 miles an hour.

MILITARY - APR 26, 2016

Russia's Putting Hypersonic Missiles on Its Battlecruisers

The blisteringly fast Zircon missile will give old battlecruisers new striking power.

Our Competition

- Extensive efforts in both China and Russia
- Russia building on Cold War legacy
 - Public statements emphasize defeat of MDA
 - Pushing to rapid operational systems
 - International partnerships (Europe, India)
 - Why???
- China the rising newcomer
 - Investing in infrastructure (tunnels)
 - Experience in testing
 - Extensive foundational research effort with universities
 - Basic research portfolio covers a wide spectrum of topics (vs. U.S. focus on fluids)
 - Building on U.S. efforts
 - Fits clearly into Chinese doctrine
- Others: Australia, India, France, Germany

National Academy Dec 2016 report highlighted threats, need for defense, integrated approach

Key Takeaways from 2016 Academy Study

- Hypersonics is the combination of speed, maneuverability, and trajectory
- Hypersonics is a threat to America's Global Vigilance, Reach, and Power
 - IC warnings are credible
 - A second-rate military with hypersonic systems can defeat a first-rate military
 - U.S. Navy, U.S. airbases especially at risk
 - This is a DOD-wide problem
- How to address?
 - Develop defensive measures (analogy to defending against kamikaze threat of WWII)
 - Detection and rapid response essential
 - Best defense may be a strong offense
 - Build an experimental capability (like space)
 - Coordinate efforts across the DOD

National Academy Dec 2016 report highlighted threats, need for defense, integrated approach

One Indication of the Competition: Papers Presented at the AIAA Hypersonics Conference

Another Indication of the Competition: YouTube Videos

Chinese researchers post about their research facilities

8/22/2019 1:55 PM

Meeting this Challenge: Plenty of Programs but are they stovepiped or coordinated?

- Conventional Prompt Strike (CPS)
 - Advanced Hypersonic Weapon (AHW)
 - FE-1 Navy variant
- DARPA Tactical Boost-Glide (TBG)/USAF Air-Launched Rapid Response Weapon (ARRW)
- USAF Hypersonic Conventional Strike weapon (HCSW)
- DARPA Hypersonic Airbreathing Weapon Concept (HAWC)
- AFOSR/ONR basic research
- US-Australia HIFiRE
- MDA defense-against portfolio

Is the U.S. Losing Our Lead?

- Snatching defeat from the jaws of victory
 - In 2004 NASA flew the first scramjet with T > D
 - In 2010 the USAF flew the first hydrocarbon scramjet

X-43; 15 years ago

Today we are further away from scramjet flight than we were 10 years ago, and not on a path to operational use

- Facilities at risk, little new investment
 - Only 2 U.S. engine test facilities
 - Quiet tunnels only at universities
 - Existing infrastructure is aging; we are closing tunnels.

X-51: 9 years ago

Limited workforce investment

What Are We Doing Wrong? Ground Test at Risk

- Hypersonics depends on ground test, analysis, computation, and flight.
 - During the NASP program, some said computers would replace tunnels. NO!
 - After HTV-2 flight, program added significant tunnel tests.
- Ground test is still an essential part of our business, and will be into the future. Part of X-43, X-51 success
- We need test-class quiet tunnels
- More engine test capability- the U.S. only has two facilities currently
- More researcher access to facilities

What Are We Doing Wrong? Insufficient flight test opportunities

DARPA HTV-2

- Two flights in 2010 and 2011
- Achieved hypersonic speed but vehicles lost

US Navy HyFly

- Three flights, then terminated in January 2008
- Never reached hypersonic flight

USAF X-51

- Four flights between 2010 and 2013
- Two successful flights, though first had issues

• AHW

- Two flights
- One success (2011), one launch failure (2014)
- FE1 followup success Fall 2017

Some noble failures and some dumb failures

We Still Have Fundamental Research Topics

- Systems and design
 - Rocket boost versus scramjet
 - Combined cycle systems
- Recovering and avoiding an engine unstart
- Active engine cooling
 - Design
 - Manufacturing/cost
- Advanced hydrocarbon fuels (endothermic, coking)
- Boundary layer transition and heating
- High L/D integrated aerodynamics for maneuverability
- Inlet design and performance across the Mach range

20

Where Do We Go From Here?

- The U.S. needs a coordinated national consensus including DOD and NASA Investing in both near and short term, not just reactive Leverage international partnerships (especially Australia)
- Maintain ground facilities and flight test capabilities, treat them as national assets
- Airbreathing must remain an option
 - Consider current programs
 - Wargamed results
- Workforce investments (universities) flying faster and higher
- Recoverable, or reusable testbed X-plane
 - Climb up the Mach scale
 - Scale up engines mass flow
 - Combined cycle systems
- Keeping long-term options on the table:
 - Aircraft unmanned or manned
 - Access to space

Thank You!