2021 NDIA Future Force Capabilities Conference

Modernizing the Energetics Manufacturing Industrial Base

Chris Marlow Energetics and Specialty Materials Handling Program Manager

FRANKLIN engineering group, inc.

Presentation Overview

- Franklin Engineering Group Introduction
- Modernization Process
- Modernization Challenges
- Lessons Learned
- Success Stories
- Conclusion

Franklin Engineering Overview

- Multi-disciplinary engineering services company
 - Chemical
 - Mechanical/Structural
 - Electrical, Instrumentation and Controls
 - Environmental
- Office located in Franklin, TN (Nashville)
- 20 plus years of executing projects for energetics and munitions production processes
- Small Business

Franklin Clients

Government	
Radford RFAAP	Indian Head NSWC
McAlester AAP	Picatinny Arsenal
Crane NSWC	Lake City AAP

Commercial	
Eastman Chemical	Pacific-Scientific
Solvay	Tesla
Mitsubishi	Nissan

Hazardous Materials Experience

HMX

KDNBF

PETN

- Munitions, Ammunition, and Primers
- Propellants: Single, double, triplebased
- > Explosives
 - TNT
 - PAX
 - PBX
 - Lead azide
 DDNP
 - Lead styphnate. ZPP
 - MIC
- Magnesium and aluminum powders
- MTV flare composition
- Elemental phosphorus, white and red
- Phosphine gas
- Lithium and sodium metal
- > Ammonium Perchlorate

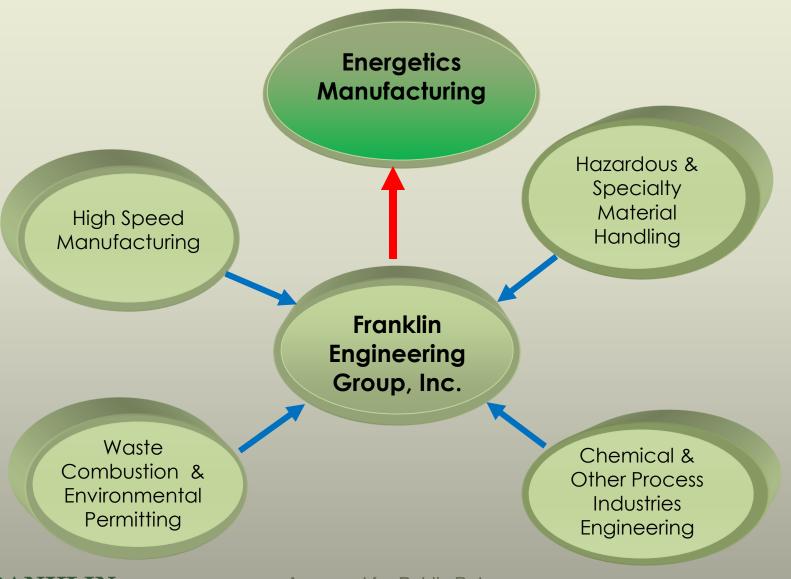
Energetics Processing Experience

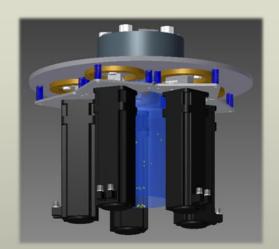
- Mixing/blending
- Granulating
- Slurry handling
- Drying and filtration
- Net-shape pressing
- Cast-cure filling
- > Extrusion
- High speed cutting
- Pick and place handling
- Gravimetric and volumetric filling
- > Abrasive jet cutting and high-pressure water washout
- Waste incineration
- Solvent/vapor recovery and distillation
- Render-safe and demil systems

Modernization - What?

- Efforts to update current energetics manufacturing facilities
- Facilities and processes designed and constructed during WWII era (1940/50's) compared to current design and construction.
- 1950's Technology

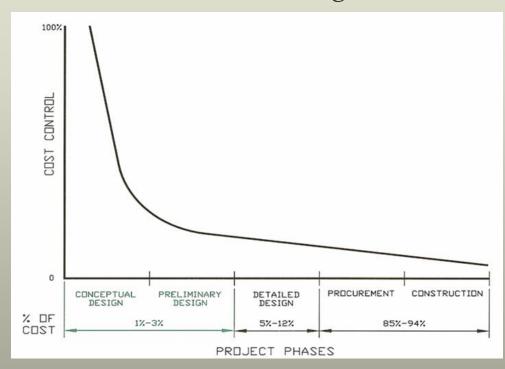
Modern Technology





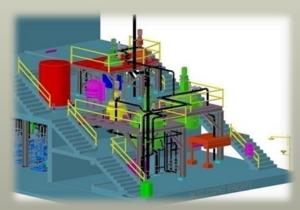
Industries

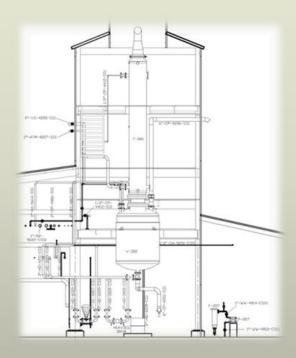
Modernization - Why?


- > Safety
 - Remove operators from dangerous activities
- Quality
 - Increase consistency and improve inspections
- Production capacity and reliability
 - Improved rates with automation
- > Cost
 - Reduced operating costs
- > Environmental Benefits
 - Reduced emissions
- Sustainability
 - Long term viability
- Competitive
 - Remain competitive in the global market

Modernization - How?

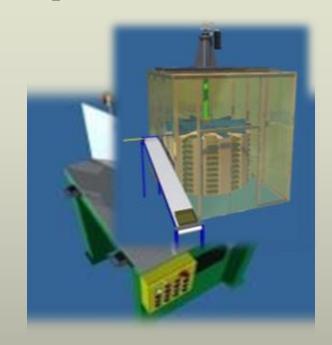
- Phase 1: Conceptual Design
- Phase 2: Development and Testing
- Phase 3: Detailed Design
- > Phase 4: Construction and Installation
- Phase 5: Commissioning





Phase 1 - Conceptual Design

- Project definition and scope
- Define production and flexibility requirements
- Determine overall throughput
- Clearly define project requirements
- Survey modernization technology
- Evaluate custom solutions
- Select best viable technology solutions
- Identify facility, utility, environmental, and infrastructure constraints


Phase 2 - Development and Testing

Objective:

Identify and validate technologies to replace aged production processes

Approach:

- 1. Research
- 2. Screening
- 3. Testing
- 4. Selection

Phase 3 - Detailed Design

- Mechanical and electrical design
- Facility design
- Safety approvals (Local, USACE, DDESB, etc)
- Generate construction drawings

Phase 4 - Construction & Installation

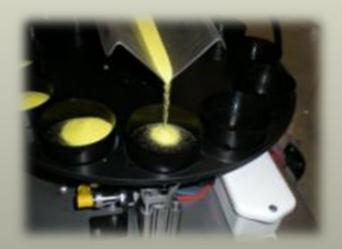
- Construct facilities (modify existing facilities)
- Fabricate custom equipment
- Purchase COTS equipment
- Install building equipment and process equipment

Phase 5 - Commissioning

- Equipment check-out
- Testing (inert batches)
- Start-up

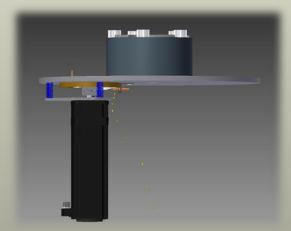
Modernization - Challenges

- Safety
 - Electrical classifications
 - Change from traditional processes
- Justification
 - Cost / Funding
- > Facilities
 - Older buildings
 - Infrastructure
- > Schedule
 - Development time
 - Safety approvals
 - Product qualifications
 - Building upgrades or new construction



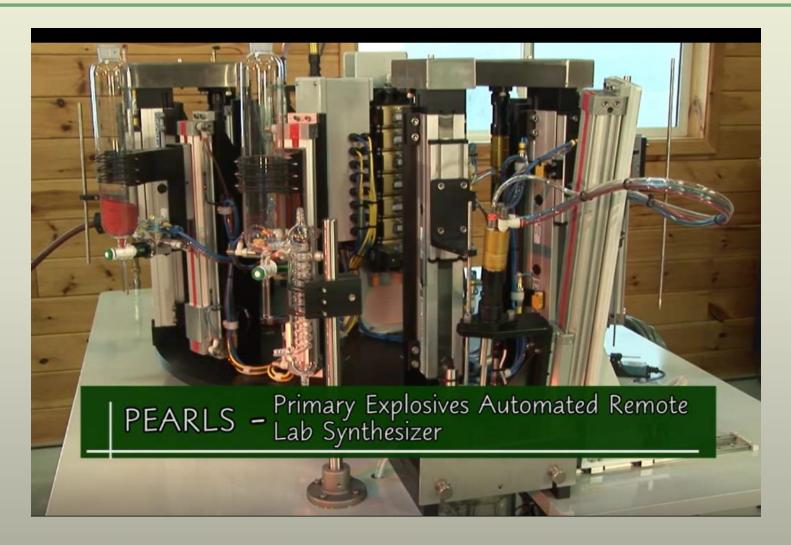
Modernization - Lessons Learned

- Safety Always the Top Priority
- > Think outside the box
- Leverage other industries
- Correctly identify problem
 - Proper scope development
 - Don't rush FEL engineering
- Funding
- Approval cycles



Successful Projects

- MTV Manufacturing
- Explosives Mixing
- Drying and filtration
- Pressing & extrusion
- Cast-cure filling
- High speed cutting
- > Pick and place handling
- Primer assembly
- Abrasive jet cutting
- Waste incineration
- Solvent/vapor recovery
- Render-safe and demil systems



Automated mixing - Various Energetics

Primary Explosives

Modernization - Summary

> What?

Bringing the energetics manufacturing process into the 21st century

- > Why?
 - Safety, quality, cost, sustainability
- > How?
 - Follow a proven modernization process and leverage technologies from the chemical, pharmaceutical, automotive industries
- > When?
 - NOW, before falling further behind
- > Questions?

