

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Software Defined Radio For Medium Caliber Munitions 64th Annual NDIA Fuze Conference

Viktor Bana & Lam Vo

DEVCOM-Armaments Center, Fuze Division

"Software-defined radio (SDR) is a radio communication system where components that have been traditionally implemented in hardware (e.g. mixers, filters, amplifiers, modulators/demodulators, detectors, etc.) are instead implemented by means of software on a personal computer or embedded system"

WHY A SOFTWARE DEFINE RADIO

Software Defined Radio

- Arbitrary Waveform
- Arbitrary Bandwidths
- Arbitrary Data Packets
- Allows for Host Nation operation
 - Programmable Waveforms
 - Adjustable Frequencies
 - Adjustable Bandwidths
- Demonstrate Prototype with EVM hardware
 - Goal to eventually fit in 30 mm or 40 mm sized munition

ISSUES IN DEVELOPING RF DATA LINK

- Performance Requirements
 - Information Requirements
 - Data Latency < xx milliseconds
- Munition Radio Pairing in Real Environment
 - Operate with Arbitrary Channel Assignment
- Spectrum Supportable Regulatory Approval to Operate
 - Frequency Assignments : Manual (SPXXI) Authority to use a specific frequency under specified operating conditions, location (like a "LICENSE" to operate something).
 - Host Nation Approval: Manual (HNC Process & HNSWD) Authority to operate equipment/emitter on a specific frequency within a Host nations sovereign borders (PERMIT & LICENSE in another country).

- In Munitions
 - Experimental system development before FCC approval
 - Allow for custom telemetry beyond COTS chips
 - Receive Communication from Base Station
- Ground Station
 - Experimental system development before stage FCC approval
 - Allow for custom telemetry beyond COTS chips
 - Direct access to Data for post processing

Traditional Round vs. SDR System

Off board Sensor allows for Advanced Detection Algorithms

LABORATORY DEMONSTRATION OVERVIEW

Distribution A 7

Description	(ASIC COTS CHIP)	Software Defined Radio
Channel Scan Time	1	5
Power Consumption	5	1
Wakeup Time	5	3
Component Size	5	1
Power	5	1
Host Nations Support	1	5
DoD Waveforms	1	5

- Use SDR to Investigate Communication Waveforms
- Demonstrate with Hardware in the Loop
- Develop Munition Pairing Algorithm

- GNU Radio
 - GNU Radio is a free open-source software development toolkit that provides signal processing blocks to investigate software radios.
- Mathworks
 - Complete End to End development of Radio Link into Embedded Hardware
 - Simulink, Communication Tool Box, Hardware Description Language Coder
- Analog Devices
 - Free Book "Software-Defined Radio for Engineers, 2018 | Education | Analog Devices"

- ASIC Chips are smaller and lower power than SDR
- SDR allows for more flexibility for DoD applications
- SDR's are becoming more prevalent. Free software tools are available for evaluation.
- SDR allows for development and demonstration of DoD systems without having to build custom ASIC's