NAVSEA WARFARE CENTERS

High Voltage Fireset Component Behavior at Elevated Temperatures

Presented to:

64th Annual NDIA Fuze Conference

Presented by:

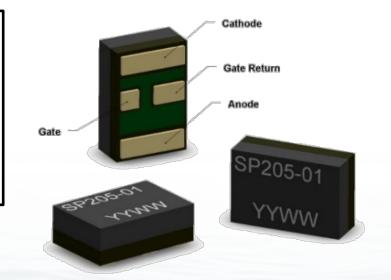
Chris Cao

May 12, 2021

Capt. Eric Correll, USN Commanding Officer

Mr. Ashley G. Johnson, SES Technical Director

Overview


- Background
- High Voltage Firesets
 - Applications
 - Components
- Technical Survey
- Testing Methodology
 - MIL-STD 331D
 - Things to consider
- Path Forward

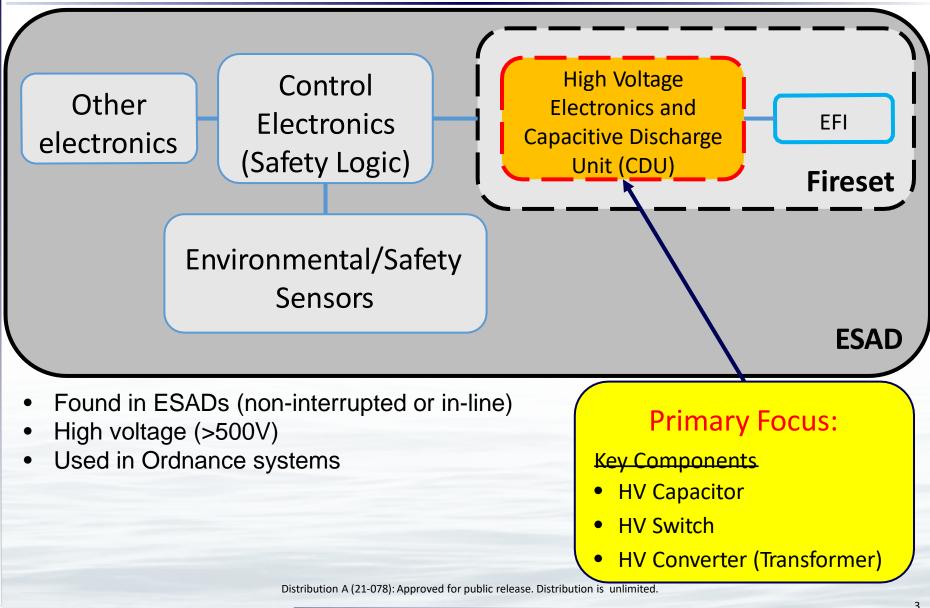
Background

 Technology Goal: Determine the margin of survivability of existing and mature high voltage fireset technologies at elevated temperatures.

Approach: Survey/consult, obtain/build and test mature fireset designs at temperatures greater than MIL-STD 331D (failure).

Current efforts funded through Joint Fuze Technology Program.

Distribution A (21-078): Approved for public release. Distribution is unlimited.


CEN

AVSEA WARFARE

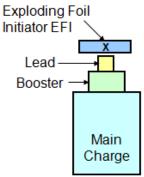
WARFARE CENTERS Indian Head

High Voltage Firesets

NAVSEA WARFARE

CENT

ERS



Typical Applications

- Precision guided munitions
- Air-to-Air Missile (AAM)
- Air-to-Ground Missile (AGM)
- Surface-to-Air Missile (SAM)
- Surface-to-Surface Missile (SSM)
- Light and Heavy Weight Torpedoes

Non-Interrupted

- "In-line" systems
- Electronic Safe Arm Device (ESAD)
- High voltage system

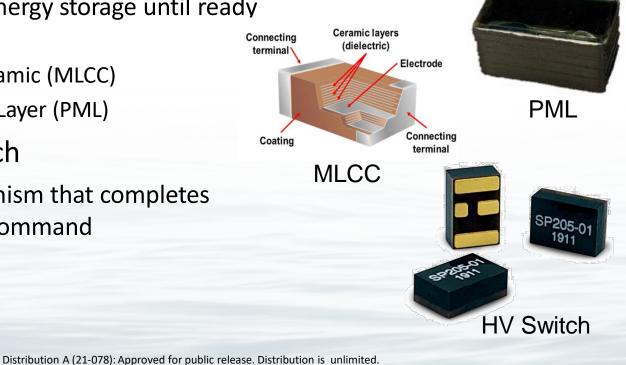
Electronic based system, no moving parts required

Example of AAM

HV Fireset Major Components

- Flyback Transformer
 - HV generation
 - Wire wound
 - Multilayer/Monolithic Ceramic
- High Voltage Storage Capacitor
 - Responsible for energy storage until ready to fire
 - Multi-layer Ceramic (MLCC)
 - Polymer Multi-Layer (PML)
- High Voltage Switch
 - Triggering mechanism that completes circuit upon fire command

NAVSEA WARFARE


CEN

ERS

Flyback Transformer

5

Other Key Subsystems

- Static Switches
 - Upper/lower
 - Prevents fireset from charging
- Dynamic Switch
 - Provides pulse signal for transformer
- High Voltage Feedback
 - Maintains high voltage threshold

Technical Survey

- Surveyed/Received HV firesets from across the DoD/DoE agencies
 - Navy
 - Army
 - Air Force
- Key Components Analyzed/Compared
- MIL-STD 331 Requirements
- Temperature regimes
 - Note: Fuzes traditionally located along central may be less affected; however, it is important to understand the margin to which these HV firesets can survive

MIL-STD 331D

- Appendix C
 - Requires a bare, unpackaged fuze and its components to be able to survive temperature extremes up to 160°F or 71°C for 28 days.
- Intend to test to failure

No Standard or Requirement above 160°F or 71°C

Distribution A (21-078): Approved for public release. Distribution is unlimited.

CENT

ERS

NAVSEA WARFARE

Testing Methodology

- Variables to consider, included here but not limited to:
 - Potential cable failures at higher temperatures
 - Soak duration in order to thoroughly evaluate HV fireset performance
 - Isolation of non-key infrastructure
 - Conformal coat/potting
 - Potential redesign for instrumentation
 - Discrete vs. Non-discrete temperature testing
 - Avoid "re-inventing the wheel"

Distribution A (21-078): Approved for public release. Distribution is unlimited.

CFNT

ERS

NAVSEA WARFARE

Path Forward

- Continue to develop testing methodology for FY21
 - Temperatures and duration
 - Locations for evaluation (leakage current, etc.)
 - Perform INERT tests in thermal chamber(s)

Thermal Chamber

Distribution A (21-078): Approved for public release. Distribution is unlimited.

CENTERS

NAVSEA WARFARE

N A V S E A W A R F A R E C E N T E R S

Questions?