

20-G-017: Polymer Multi-Layer Capattery

FUZING TECHNOLOGY

Low Voltage PML Capacitor Development and Characterization

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA000352! Presented By:

Joshua Dye

(505) 844-8627, josdye@sandia.gov

Distribution A SAND2021-5438 C

Introduction

Polymer Multi-Layer (PML) capacitors display advantageous characteristics worth pursuing

- High energy density
- Lightweight
- Robust
 - Self-healing
- Stable
 - Temperature
 - Voltage

COTS PML capacitors (licensed by PolyCharge America Inc.) not optimized for energy density

Can be improved through material selection and processing

Multiple polymer formulations evaluated for dielectric characteristics

Distribution A

Attempted fabrication of P230 material. Ultimate Failure due to moisture sensitivity

	Sample 1	Sample 2	Sample 3	Sample 4
Initial Leakage (µA)	1117	691	1292	1004
Leakage after vacuum drying (µA)	19	15	87	80
Leakage after 3 hours (µA)	45	44	40	31
Leakage after 24 hours (µA)	1174	924	1241	1800

Returned to standard polymer formulation, using very thin layers

Lower dielectric constant (k=3.2), but extremely stable across temperature and easier to fabricate Distribution A

Prototype Hardware

Prototype PML Capacitor completed and tested

- Frequency characterization
- Temperature characterization
- Leakage current vs voltage
- Voltage characterization
- Comparison to alternative technologies
 - Ceramics (X7R¹ and X5R²)
 - Tantalum³
 - Hybrid/Wet Tantalum⁴

15 Capacitors Received and Tested

Comparisons made to the following part numbers (1) P/N: GCJ21BR71C475KA01, (2) P/N: GRM31CR61C476ME44 (3) P/N: TAJE337M016RNJ, (4) P/N: HC2B025102

Frequency Characterization

Frequency Comparison

Temperature Characterization

Very stable across temperature

PML and tantalum are top performers

PML ESR ~10X better ESR than tantalum. No data on ceramics.

Limited Leakage Current Data

- X5R: 15.1µA at 16V
- X7R: 17µA at 25V
- Hycap: 7.5µA (unknown voltage)
- Tantalum: 1.7μA at 16V (plot below)

Comparable leakage current to alternatives

T Voltage Characterization

Extremely stable across voltage Known capacitance loss with ceramics

Volumetric Capacitance (VC): Capacitance (mF) / Volume (cm³)

Capacitor	VC at OV	VC at 12V	VC at 125C at 12V	VC at -55C at 12V
PML Prototype	.52	.52	.52	.52
X7R Ceramic	1.5	.54	.52	.48
X5R Ceramic	5.74	1.18	1.07 (@ 85C)	1.07
Tantalum	2.56	2.56	2.64	2.54
Evans Hybrid	1.54	1.54	1.68	.72
COTS PML	.28	.28	.28	.28

Inherent stability makes comparisons more favorable for PML ESR, reliability, and robustness (not captured in chart) add to PML desirability

Conclusions

- Initial development and demonstration of prototype PML capacitor complete!
- Great electrical and mechanical characteristics inherent in the material
- Continuing to develop improved designs for increased energy density and usability
 - Prototype 2: 1mF, 10mm x 10mm x 10mm (half the size!)
 - Prototype 3: Same material as 2 in 5mm x 5mm x 5mm footprint
- Mechanical testing to come

TECHNOLOGY

Exceptional Service in the National Interest

Distribution A