Naval Surface Warfare Center, Dahlgren Division

Performance in Noise (PiN)

2/9/2021

Distribution A: Approved for public release: distribution unlimited.

* Background

- -Military tasks require rapid and reliable vocal communication.
- -Tasks often take place in environments with continuous and unexpected noise disrupting. (CIC, flight deck, engine room, etc.)

♦ History of PiN

- Little data was available to quantify effects of noise in environment or Hearing Loss for tactical situations.
- -PiN sought to quantify communication noise impact on human performance in a tactical situation.
- In noisy environments performance does suffer. Sailors speak louder, speak slower, communicate less accurately, share less information, and are less focused on visual information.

Example CIC

Cause

- Noisy environments
- Loud environments
- Poor communications equipment

Sector Sector

- Reduced ability to vocally communicate
- Reduced ability to perform tasks
 - Task time, task accuracy, attention, stress, frustration, yelling, mal-adaptive behaviors, idle time, situation awareness (SA), engagement level, engagement time, alternative communication time, teammate effects, etc.
- Long term hearing damage

Seffect Level 2

- Risks mission
- Risks life

*****Wear hearing protection

-Further reduced ability to vocally communicate and to perform tasks

Neglect hearing protection

-Further reduces ability to vocally communicate over time

Active hearing protection

-High cost, fear of damage, not used

Increased yelling and asking for repeats

-Further increases environment noise amplitude, causes delays

*****Use text chat, switch station, or move closer to speaker

- -Reduces engagement with tactical system and does not gain full SA
- -Increases idle time waiting for response
- -Reduces teammate engagement with tactical system and reduces SA

Possible Solutions

* Promising

-Provide augmented 2 way communication aid

Not promising

- -Reduce environment noise
- -Reduce communications noise
- -Provide other modes of 2 way communication
- -Provide other modes of 1 way communication

Develop an augmented 2 way communications aid

- -Deciphers vocal communications for noisy environments
- -Deciphers vocal communications for Navy jargon (abbreviations, phonetics, numbers, alternate meaning/structure/grammar)
- -Presents easily digestible communication

Goals

Phase 1

Evaluate Speech to Text (STT) Commercial off the Shelf (COTS) models

Phase 2

- -Train for specific real Navy jargon
- -Train for specific synthetic Navy noisy environments

Phase 3

-Human performance testing

♦ Phase 4

-Generalize for real Navy jargon and real Navy noisy environments

Phase 5

-Transition

Figures of Merit

✤ Phase 1-2, 4: Select, train, evaluate

- Word Error Rate (WER)
- Jargon Accuracy Rate (JAR)
- F1 Score
- System resource usage

✤ Phase 3: Prototype aid usability & performance

- Task Load Index (TLX)
- Systems Usability Scale (SUS)
- Engagement
- Task time
- SA focus time
- Communications mode changes
- Teammate forced backup
- Eye movements
- Task accuracy
- Behavior changes

- Gather Data (record, transcribe, identify jargon)
- Preprocess (filter, sample rate, sample depth)
- Prepare (mix noise, slice utterances, summary stats)
- Test (identify metrics, batch process, analyze)

STT	X	Noise Amplitude	X	Noise Type
Deep-Speech (RNN)		None		White
CMU Sphinx		Low		Gray
Kaldi (DNN-HMM & GMM-HMM)		High		Pink
Julius (HMM & DNN)				Engine room
Wav2letter (RNN & CNN)				
Dragon (DNN)				

Results: Noise

Overall Performance

STT Tool	Jargon Rank*	Performance Rank	Low Noise Rank	High Noise Rank	Cumulative Rank**
Dragon	1	1	1	2	5
Deep Speech	4	3	3	1	11
Wav2Letter	4	2	2	4	12
Kaldi	4	4	4	3	15
Julius	4	5	5	5	19
CMU Sphinx	4	6	6	6	22

Discussion

- ✤ Jargon (Initialisms letter names)
 - Dragon out performed all others because it can interpret Initialisms based on letter names

✤ Jargon (Acronyms)

- All tools struggled with inconsistent results due to unique Navy acronyms

* Noise

- Deep Speech performed the best in the high noise conditions
- Dragon suffered to cope with intelligibility issues driven by high noise
- Deep Speech performed similarly to several others in the low noise conditions
- Different noises had varying effects at low and high intensities
- White & pink high noise had the greatest adverse effect on STT tool performance
- Machine low noise had the greatest adverse effect on STT tool performance

✤ Selected for continued development

- Dragon: Highest overall performance (all words & jargon) in clean and low noise conditions
- Deep Speech: Most resilient to noise

Limitations

Limited Jargon Set

- -Limited use scope of words
- -Initialisms with NATO phonetic alphabet were not fully examined
- -Initialisms with NATO phonetic numbers were not fully examined
- -Shortenings were not fully examined
- -Contractions were not fully examined
- -Alternate meaning/structure/grammar was not fully examined

Floor Effects

- Ideal Microphone Performance
- ***** Generic Machine Noise Profile

* Development

- Early results are promising and provide motivation to continue development
- -Training for specific real Navy jargon
- -Training for specific synthetic Navy noisy environments
- -Human performance testing
- -Incorporating fixes to existing limitations
- *Impacts
 - -Warfighter communications improvements
 - -Warfighter task performance improvements

♦ Spin off

-Warfighter use of voice controlled systems

Acknowledgements

♦ Office of Navel Research, Code 34♦ Sonalysts