

The influence of mechanical properties on the explosiveness of energetic materials

Stokes Fellowship Project

March-August 2020

Morgan Bolton, DOSG ST1

Kevin Jaansalu, MSIAC, Dr Matthew Andrews DOSG ST1

Morgan.bolton101@mod.gov.uk

- Purpose of the work
- Material selection
- Defining undamaged materials
- What is damage
- Effect of damage
- Overview for PBX-9501
- Multiple and combined aggressions
- Further work
- Summary

- To understand effect of damage on the mechanical properties of an energetic material and on the behavior of the component
- Comparisons between pristine and damaged materials
- Link between material level and component level
 - o Material level change in mechanical properties
 - o Component level change in response to stimuli

Material selection

• PBX materials

- o Binder changes the mechanical properties of a formulation
- o Wide range of properties
- o Complex
- o Many uses

Figure 2. Optical micrograph of PBX

[2]

Defining undamaged materials

• Lack of clarity and inconsistency with use of terms

Figure 3. Visual Relationship between the definition for 'original', 'baseline' and 'pristine' materials

10/05/2021

What is damage?

- Change from the original material
 - Visible 0
 - Measurable 0
- Can cause a change in performance
- Different sources of damage
 - Mechanical Ο
 - Thermomechanical \cap
- Damage at the material and/or component level
- Cracks, deformation and debonding, porosity and permeability •

[3]

Figure 4. Interfacial crack

Figure 5. Internal crystal crack

Figure 6. Micrograph showing debonding

Factors affecting damage

- Material facto
 - Material factors
 - o Particle size and shape
 - o Composition

• Environmental factors

- o Atmospheric pressure
- o Low and high temperatures

10/05/2021 effect of particle size. Πιστροματίο Statement Α, Approved for public release. Distribution of the material active 710μm, RF 38-22 RDX 159μm

Microstructural changes

- Visual
 - o Longer the temperature insult, the bigger the crack
 - No quantification of amount, location, or distribution of cracks
- Mass and density
 - Greater mass loss at higher temperatures, and longer duration
- Porosity and permeability
 - o Increases with temperature and duration of insult
 - o Confined vs. unconfined
- Detonation velocity
 - o Decreases with increasing temperature

Figure 9. Microscopic images of PBXN-9 [8] before and after damage at 180°C for 3 hours

Effects of damage - small scale tests

Supporting Munitions Safety

Table 1. Small scale sensitivity test results for thermally damaged PBX materials

PBX	Explosive Fill	Binder	Condition	Test	Result	Ref
LX-10	HMX 95%	Viton 5%	180 °C 4hr	Impact (Drop Hammer)	Increase 52cm (71cm pristine)	[9]
LX-14	HMX 95.5%	Estane 4.5%	180 °C 4hr	Impact (Drop Hammer)	Increase 75cm (94cm pristine)	[9]
LX-17	TATB 92.5%	Kel-F 800	190 °C 250 °C	Impact (Drop Hammer)	No change (no data)	[10]
PAX-2A	HMX 85%	BDNPA/F 9%	60 °C 12mths	Impact: ERL, type 12, 2.5kg	No change (no data)	[11]
PBX-9501	HMX 95%	Estane 5%	180 °C 4hr	Impact (Drop Hammer)	Increase 82cm (94cm pristine)	[9]
Rowanex- 1440	RDX 66%	HTPB 12%	60 °C 12mths	Impact	Increase (no data)	[11]
PBXN-110	HMX 88%	HTPB	70 °C 6mths	Impact	No change	[12]
10/05/2021	Distribution Statement A, Approved for public release. Distribution Unlimited			9		

Supporting Munitions Safety

- Burn area
 - Increases with temperature at which damage is induced

٨

Ministry

of Defence

deas

- Burn rate
 - o Increases with temperature at

Table 2. Burn rate of PBXN-9 and LX10

Temperature	Burn Rate for PBXN-9 [15] [16]	Burn Rate for LX-10 [9] [10]
90°C	No change compared to pristine	
110°C	Only slight acceleration	
150°C	Approximately 21 times faster than pristine	Slightly faster than pristine
180°C	2 to 3 times faster when damaged for several hours.	2 to 3 times faster than pristine. 4hours at 180 several orders of magnitude faster
190°C		Self-ignited

- PBXN-9 92% HMX, DOA
- LX10 95% HMX, Viton
- HMX-PBX sample 85% HMX, HTPB

 Figure 10. Burn area increase due to thermal damage of HMX

 10/05/2021
 PBX spinipleion[\$taijement A, Approved for public release. Distribution Unlimited

Ministry of Defence

Supporting Munitions Safety

Table 4. Porosity and Burn Rate Results for Thermally Damaged PBX-9501 and LX-10 [17].

Composition	Damage Process	Porosity	Burn Rate
PBX-9501	150°C for 134 minutes	3.8 %	10 ¹ -10 ³ mm/s
PBX-9501	174°C for 75 minutes	6.5 %	$10^4 \ 10^5 \ mm/s \ (172^{\circ}C)$
PBX-9501	174°C for 227 minutes	6.7 %	10 ⁴ -10 ⁶ mm/s (173 C)
LX-10	150°C for 134 minutes	3.1 %	-
LX-10	174°C for 75 minutes	5.2 %	-
LX-10	174°C for 227 minutes	6.4 %	-
LX-10	180°C	-	10 ³ -10 ⁵ mm/s

Linking porosity to burn rate

- LX-10 HMX 95%, Viton
- PBX-9501 HMX 95%, Estane
- Porosity increases with temperature and duration for both
- Increased porosity leads to increased burn rate, no clear pattern
- For burn rates the duration of insult was not stated

10/05/2021

Effects of damage - confinement

Supporting Munitions Safety

Table 5. Effect of Confinement on Permeability and Porosity of PBX-9501 [18]

۲

Ministry of Defence

	Temperature and Duration	Permeability, m ²	Porosity
Sample glued to holder, radially confined	180°C, 4 hours	8.3 x 10 ⁻¹⁵	10 %
Unconfined	174°C, 2 hours	1.4 x 10 ⁻¹³	>12 %
Sampled glued to holder, radially confined	174°C, 2 hours	1.4 x 10 ⁻¹⁵	6 %

- PBX-9501 HMX 95%, Estane
- Confinement has a greater effect than temperature and duration on the porosity
- Confinement provides a restraint to the formation of damage 10/05/2021 Distribution Statement

Table 6. Effect of confinement on the Permeability of PBX-9501 [19]

	Permeability, m ²	
Confined	2.89 x 10 ⁻¹⁶ (3 orders of magnitude larger than pristine)	
Unconfined	6.88 x 10 ⁻¹⁴ (5 orders of magnitude larger than pristine)	

Temperature and detonation velocity

Supporting Munitions Safety

Table 7. Table to show the relationship between temperature of insult and detonation velocity [20][21][22]

Temperature	Detonation Velocity of LX-04	Detonation Velocity of HU45 (85% HMX, HTPB binder), km/s
Pristine	8.5	8.3
165°C	-	7.8
170°C	-	6.8
175°C	-	7.0
185°C	7.7-7.8	

- LX-04 HMX 85%, Viton
- HU45 HMX 85%, HTPB
- Temperature causes a decrease in the detonation velocity
- LX-04 has less change over a greater temperature range than HU45
- HU45 detonation velocity increases at 175°C slightly, suggestion temperature has no greater effect at 170-175°C?

10/05/2021

Crack size and critical pressure

- Crack size 2-20µm at 180°C, 30 mins
- Crack size 10-100µm at 180°C, 3 hrs
- Could use similar plots to highlight where acceptable limits for damage formation may lie if the acceptable limit for critical pressure is known

Figure 11. Graph to show the relationship between crack size and critical pressure for PBX-9501

Overview table for PBX-9501

	Test	Mechanical Damage Response	Thermal Damage Response
Characteris ation	Visual	Cracks, 200-300 µm [26] [27] [28]	Cracks, 2-20 µm. pores increase with increasing temperature of insult [26]
	Density		1.53 g/cm ³ (1.81 g/cm ³ pristine) [28]
	Mass		0.7 % decrease [28]
	Permeability		Increased with increasing temperature of insult. Increased with duration of insult [30] [31] [32] [33] [34]
	Porosity		Increased with temperature of insult. Increased with duration of insult [66]
Small-scale Test	Impact test	Changes in sensitivity seen (both increase and decrease) [29]	Increased sensitivity[35][36] [37]
	Friction test		No change [25]
	Spark test		No change [25]
Sub-scale Test	Critical pressure	1.4 ± 0.4 MPa. Increase as crack size decreases [26]	9.2 ± 0.4 MPa. Decreases with porosity and permeability [26] [38] [39] [12]
	DDT tube test		 Porosity increases, run distance decreases Temperature of insult increases, run distance decreases Duration of insult increases, run distance decreases [40]
	Burn rate		Increases [25]
	Impact velocity	Decreases [27]	
	Run length to detonation	Decreases as the velocity of impact projectile increases [27]	

Multiple and combined aggressions

- Multiple bullet impacts
 - US bullet impact tests
 - 10 out of 28 change in response
 - Type V to Type IV
 - Limited details on progression from first impact to second/third

- Slow cook off and a fuel of fire
 - Replicate worst case scenario
 - Slow cook off, Type
 V
 - Fuel fire ignition changed to Type III

- Heat cycling and vibrations
 - Investigation of a Paveway
 IV accident
 - Unintended burn witnessed in environmental vibration test
 - Cause: combination of prior heat cycling and vibrations

[41][42][43]

16

Figure 12. Photographs of the response of a warhead containing a PBX undergoing a slow cook off followed by a fuel fire. Left to right is the slow cook off, fuel fire ignition and explosion Distribution Statement A, Approved for public release. Distribution Unlimited

Summary

- No in-depth damage studies conducted
- Little available data for multiple and combined aggressions but there is evidence of a substantial difference from single aggressions
- Further work
 - o Publish experimental detail
 - o Realistic damage insults
 - o Quantification of damage
 - o Links between damage formation and response

References

Supporting Munitions Safety

- [1] -W. G. Proud, "The Characterisation and Modelling of Polymer Bonded Explosives," Institute of Shock Physics, Imperial College London, London.
- [2] P. J. Rae, H. T. Goldrein and S. J. P. Palmer, "Quasi-static studies of the deformation and failure of b-HMX based polymer bonded explosives," *Proceedings of The Royal Society*, vol. 458, pp. 743-762, 2002.
- [3] C. R. Siviour, M. J. Gifford, S. M. Walley, W. G. Proud and J. E. Field, "Particle size effects on the mechanical properties of a polymer bonded explosive," *Journal of Materials Science*, vol. 39, pp. 1255-1258, 2004.
- [4] -D. Collins, "Mechanical properties of materials: Stress and strain". [Online]. <u>https://www.linearmotiontips.com/mechanical-properties-of-materials-stress-and-strain/</u> [Accessed 02 June 2020]
- [5] P. C. Hsu, E. Glascoe, L. Fried, H. K. Springer and J. L. Maienschein, "Material property characterization of thermally damaged HMX-based Formulations," Lawrence Livermore National Laboratory, Livermore, CA, 2014.
- [6] P. C. Hsu, M. DeHaven, M. McClelland, C. Tarver, S. Chidester and J. Maienschein, "Characterization of damaged materials," Lawrence Livermore National Laboratory, Livermore, CA, 2006.
- [7] F. Peugeot, I. J. Powell and D. S. Watt, "The effect of ageing upon IM performance and munitions safety," MSIAC, Brussels, 2005.
- [8] MSIAC, "EMC Formulation PBXN-109," MSIAC, 29 11 2017. [Online]. Available: https://emc.msiac.nato.int/formulations/360/?position=10&count=11. [Accessed 22 05 2020]
- [9] D. Meuken and G. Scholtes, "Thermal and mechanical damage in PBX's part II," TNO Defense, Security and Safety, Rijswijk, the Netherlands, 2006.
- [10] E. A. Glascoe, P. C. Hsu and H. K. Springer, "The role and importance of porosity in the deflagration rates of HMX-based materials," Lawrence Livermore National Laboratory, Arlington, VA, USA, 2001.
- [11] D. Meuken, G. Scholtes and C. van Driel, "Quantification of thermal and mechanical damage in PBX's," TNO Defence, Security and Safety, The Netherlands, 2006.
- [12] G. Scholtes, R. Bouma, F. P. Weterings and A. van der Steen, "Thermal and Mechanical Damage of PBX's," in *Detonation Symposium*, The Netherlands, 2002.
- [13] T. T. Nguyen, D. N. Phan, D. C. Mguyen, V. T. Do and L. G. Bach, "The Chemical Compatibility and Adhesion of Energetic Materials with Several Polymers and Binders: An Experimental Study," *Polymers*, vol. 10, pp. 2-11, 2018.
- [14] S. E. Nyholm, "Insensitive Munitions and Ageing," FOI Swedish Defence Agency, 2009.

10/05/2021

References

- [15] D. Meuken, G. Scholtes and C. van Driel, "Quantification of thermal and mechanical damage in PBX's," TNO Defence, Security and Safety, The Netherlands, 2006.
- [16] D. Meuken and G. Scholtes, "Thermal and mechanical damage in PBX's part II," TNO Defense, Security and Safety, Rijswijk, the Netherlands, 2006.
- [17] P. Hsu, P. C. Souers, S. Chidester, J. Alvares, M. De Haven, R. Garza, P. Harwood and J. Maienschein, "Detonation measurements on damaged LX-04," *Propellants, Explosives, Pyrotechnics,* vol. 32, no. 6, pp. 509-513, 2007.
- [18] E. A. Glascoe, P. C. Hsu and H. K. Springer, "The role and importance of porosity in the deflagration rates of HMX-based materials," Lawrence Livermore National Laboratory, Arlington, VA, USA, 2001.
- [19] P. Hsu, G. Hust, M. Dehaven, S. Chidester, L. Glascoe, M. Hoffman and J. L. Maienschein, "Measurement of material properties of damaged energetic materials," Lawrence Livermore National Laboratory, Llvermore, CA, 2010.
- [20] P. C. Hsu, E. Glascoe, Fried, H. K. Springer and J. L. Maienschien, "Material Property Characterization of Thermally Damaged HMX-based Formulations," in *Detonation Symposium 2015*, Livermore, CA, 2015.
- [21] S. F. Son, H. L. Berghout, C. B. Skidmore, D. J. Idar and B. W. Asay, "Combustion of damaged high explosives," Los Alamos National Laboratory, Los Alamos, NS, USA, 2000.
- [22] D. J. Idar, J. W. Straight, M. A. Osborn, w. L. Coulter, C. B. Skidmore, D. S. Phillips, M. E. DeCroix, G. A. Buntain and P. M. Howess, "Low amplitude impact testing of baseline and aged, pristine and damaged PBX 9501," Los Alamos National Laboratory, Los Alamos, NM, 2000.
- [23] H. L. Berghout, S. F. Son, C. B. Skidmore, D. J. Idar and B. W. Asay, "Combustion of damaged PBX 9501 explosive," *Thermochimica Acta*, vol. 384, pp. 261-277, 2002.
- [24] D. N. Preston, P. D. Peterson, K. Lee, D. E. Chavez, R. Deluca, G. Avilucea and S. Hagelberg, "Effects of damage on non-shock initiation of hmx-based explosives," Los Alamos National Laboratory, Los Alamos, NM, 2009.
- [25] D. K. Zerkle, B. W. Asay, G. R. Parker, P. M. Dickson, L. B. Smilowitz and B. F. Henson, "On the permeability of thermally damaged PBX 9501," *Propellants, Explosives, Pyrotechnics,* vol. 32, no. 3, pp. 251-260, 2007.
- [26] B. W. Asay, T. Schaefer, P. Dickson, B. Henson and L. Smilowitz, "Measurement of Gas Permeability of Thermally Damaged PBX 9501," Los Alamos National Laboratory, Los Alamos, NM, 2002
- [27] G. R. Parker, B. W. Asay, P. M. Dickson, B. F. Henson and L. B. Smilowitz, "Effect of thermal damage on the permability of PBX 9501," Los Alamos National Laboratory, Los Alamos, NM, 2003.
 10/05/2021 Distribution Statement A, Approved for public release. Distribution Unlimited

- [28] B. W. Asay, G. Parker, P. Dickson, B. Henson and L. Smilowitz, "Dynamic measurement of the permeability of an explosive undergoing thermal damage," *Energetic Materials*, vol. 21, pp. 25-39, 2004.
- [29] G. R. Parker, P. M. Dickson, B. W. Asay, L. B. Smilowitz, B. F. Henson and W. L. Perry, "Towards an understanding of gas permeation in thermally damaged PBX 9501," Los Alamos National Laboratory, Los Alamos, NM, 2005.
- [30] D. Meuken, G. Scholtes and C. van Driel, "Quantification of thermal and mechanical damage in PBX's," TNO Defence, Security and Safety, The Netherlands, 2006.
- [31] P. J. Rae, H. T. Goldrein and S. J. P. Palmer, "Quasi-static studies of the deformation and failure of b-HMX based polymer bonded explosives," *Proceedings for The Royal Society,* vol. 458, pp. 743-762, 2002.
- [32] P. Cheese, P. Barnes, M. Sharp, R. Hollands, I. Murray, D. Mullenger, P. Jemmett and N. Davies, "Studies on the Effect of Ageing on a Range of UK Polymer-Bonded Explosives," Insenitive Munitions & Energetic Materials Technology Symposium (IMEMTS), UK, 2004.
- [33] G. R. Parker, P. D. Peterson, B. W. Asay, P. M. Dickson, W. L. Perry, B. F. henson, L. Smilowitz and M. R. Oldenborg, "Examination of morphological changes that affect gas permeation through thermally damaged explosives," *Propellants, Explosives, Pyrotechnics,* vol. 29, no. 5, pp. 274-281, 2004.
- [34] G. R. Parker, B. W. Asay, P. Dickson and W. L. Perry, "Closed-bomb combustion of hot, thermally damaged PBX 9501," Los Alamos National Laboratory, Los Alamos, NM, USA, 2006.
- [35] G. R. Parker, P. Dickson, B. W. Asay and J. M. McAfee, "DDT of hot, thermally damaged PBX 9501 in heavy confinement," Los Alamos National Laboratory, Los Alamos, NM, 2010.
- [[36] -B. Blazek, "Novel Slow Cook-off Test Method to Replicate Worst Case for Munitions Containing Internal Fuel," Naval Air Warfare Center Weapons Division, China Lake, CA, 2019.
- [37] Naval Ordnance Safety and Security Activity Insensitive Munitions Office (N855), "Analysis of Insensitive Munitions Bullet Impact Test Results," Naval Ordnance Safety and Security Activity Insensitive Munitions Office (N855), Indian Head, Maryland, 2020.
- [38] Failure Review Board Weapons and Energetics Department, "Paveway IV Failure Review Board Final Report," Naval Air Warfare Center Weapons Division, China Lake, CA, 2007.