

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Evaluation of PBXN-9 Utilizing FEM HMX

Presenter: Daniel Iwaniuk (daniel.p.iwaniuk.civ@mail.mil)

Principal Investigators: Daniel Iwaniuk (daniel.p.iwaniuk.civ@mail.mil) Philip Samuels (philip.j.samuels2.civ@mail.mil)

Team: (DEVCOM AC) Mr. Sean Swaszek, Mr. Erik Wrobel, Mr. David Rydzewski, Dr. Henry Grau, and Mr. Alex Gandzelko (BAE Systems) Mr. Brian Alexander - R&D Sr. Principal Chemist

DEVCOM AC; Picatinny Arsenal, NJ BAE SYSTEMS

DISTRIBUTION A	

BRIEFING OUTLINE

- 1. Background & Technical Description
- 2. PBXN-9 FEM HMX Characterization & Pressing
- 3. Testing and Evaluation
 - a) Performance Testing
 - b) Shock Sensitivity Testing
 - c) Mechanical Properties Testing
 - d) Small-Scale Fragment Attack Testing
 - e) Setback Survivability Testing
 - f) Irreversible Growth Study
 - g) Exudation Study
- 4. Conclusions

- PBXN-9 Formulation:
 - HMX
 - DOA (dioctyl adipate) as plasticizer
 - HyTemp as binder
- Fluid Energy Mill (FEM) Technology:
 - Utilizes compressed air to grind particles to less than 10 microns in size
- FEM nitramines are currently used in qualified energetic formulations:
 - Properties have not yet been fully characterized
 - FEM RDX is currently in full rate production, however, FEM HMX has not been fully explored
- BAE Systems has produced FEM HMX formulations:
 - LX-14 with 80% and 100% FEM HMX
 - PBXN-9 with 100% FEM HMX
 - Formulations have been successfully scaled-up for LSGT and performance testing

PBXN-9 FEM HMX: CHARACTERIZATION

Initial Safety Testing:

Material	ERL Impact (cm)	BAM Friction (N)	ESD (J)
PBXN-9 FEM HMX	27.7	10/10 No Goes @ 216	20/20 No Goes @ 0.020
Legacy PBXN-9	40.9	10/10 No Goes @ 324	20/20 No Goes @ 0.020
RDX (Class I Type II)	27.2	10/10 No Goes @ 168	20/20 No Goes @ 0.040

> SEM Images of Molding Powder:

✓ Granules were well coated and spherical in shape

Pressing Study:

 Consistently achieved 98.5% theoretical maximum density (TMD)

UNCLASSIFIED//FOR OFFICIAL USE ONLY//DISTRIBUTION A

PBXN-9 FEM HMX: LARGE SCALE DETONATION VELOCITY TEST

- A Large Scale Detonation Velocity (LSDV) test was conduct to determine the detonation velocity of PBXN-9 FEM HMX compared to legacy PBXN-9
 - ✓ Result = PBXN-9 FEM HMX detonation velocity is equivalent to legacy PBXN-9

Formulation	Density (g/cc)	DV (km/s)	Dent (inches)
PBXN-9 with 100% FEM HMX	1.72	8.41	0.382
PBXN-9 with 100% FEM HMX	1.72	8.40	0.369
Legacy PBXN-9	1.64	8.07	0.378
Legacy PBXN-9	1.64	8.11	0.376
Legacy PBXN-9	1.70	8.33	0.400
Legacy PBXN-9	1.70	8.30	0.403
Legacy PBXN-9	1.74	8.46	0.417
Legacy PBXN-9	1.74	8.48	0.426

PBXN-9 FEM HMX: LARGE SCALE GAP TEST

- A Large Scale Gap Test (LSGT) was conduct to determine the shock sensitivity of PBXN-9 FEM HMX compared to legacy PBXN-9
 - ✓ Result = PBXN-9 FEM HMX showed a 37 54 card improvement compared to legacy PBXN-9

Formulation	Testing Facility	Percent of FEM HMX	LSGT (Cards)	LSGT (Kbar)	Density (g/cc)
PBXN-9 FEM HMX	Picatinny Arsenal	100	167.5	30.70	1.72
Legacy PBXN-9	Picatinny Arsenal	0	222.0	16.47	1.70
Legacy PBXN-9	Picatinny Arsenal	0	205.0	19.54	1.74
Legacy PBXN-9	BAE Systems	0	186.5	24.22	1.69
PBXN-9 FEM HMX	BAE Systems	45	184.5	24.81	1.67
PBXN-9 FEM HMX	BAE Systems	75	186.0	24.36	1.65
PBXN-9 FEM HMX	BAE Systems	100	156.0	35.69	1.65

PBXN-9 FEM HMX: UNI-AXIAL COMPRESSION TESTING

- A series of uni-axial compression tests were conduct at different temperatures to determine if utilizing 100% FEM HMX improved the mechanical strength of the PBXN-9 formulation
 - ✓ Result = PBXN-9 FEM HMX showed an increase in strength, modulus, and strain at peak pressure compared to legacy PBXN-9

PBXN-9 FEM HMX: SMALL-SCALE FRAGMENT ATTACK TEST

- Small-Scale Fragment Attack (SSFA) tests were conducted to determine the reaction violence from a frag attack on PBXN-9 FEM HMX compared to legacy PBXN-9
 - Result = PBXN-9 FEM HMX had an improved response compared to legacy PBXN-9

	Results w.r.t. Cover Plate Thickness (inches) for Single Liner in RP-4			
Sample	1/8" (3.2 mm)	1/4" (6.3 mm)	3/8" (9.5 mm)	1/2" (12.7 mm)
PBXN-9 FEM HMX	Detonation	No Reaction Nearly all HE remained	No Toot	No Test
		No Reaction Nearly all HE remained	No Test	
PBXN-9 (Legacy)	Detonation	Deflagration	No Reaction	No Test

Levels of Reaction			
No Reaction	Apparatus intact with <1% tube expansion		
Burn	Apparatus intact with tube bulged or having a single split; alternatively, rods broken with <1% tube expansion		
Deflagration	End closures undamaged except for possible broken edges on Closure Plate; Tube split into pieces or split and opened wide, either which can break rods; Alternatively, tube just bulged and Cover Plate or rods broken to release pressure		
Explosion	Clamp & Spacer broken, Cover Plate perforated but not sheared through opening in Clamp & Spacer, Tube split into pieces, Rods broken, Closure Plate broken with center intact		
Detonation	Clamp & Spacer broken into pieces, Cover Plate sheared through opening in Clamp & Spacer, Tube and Closure Plate fragmented, no sample recovered		

- NSWC Setback testing was conducted on PBXN-9 FEM HMX as a screening tool for setback sensitivity
 - ✓ Result = PBXN-9 FEM HMX showed improved response compared to legacy PBXN-9

Sample Pellet - Post-Test (No Reaction, Partial Cavity Collapse)

- Irreversible Growth testing was conducted to determine if PBXN-9 FEM HMX pellets increased in volume after thermal cycling
 - Result = PBXN-9 FEM HEM showed no notable volume changes after thermal cycling;
 PASSED with no more than 1% volume change

PBXN-9 FEM	Δ Volume (%)	
1	-0.9565	
2	-1.0258	
3	-1.1548	
4	-0.7295	
Average	-0.9666	

PBXN-9 FEM HMX: EXUDATION STUDY

- Exudation testing was conducted to determine if the binder system exudates from pressed PBXN-9 FEM HMX after being exposed to elevated temperatures
 - ✓ Result = PBXN-9 FEM HEM showed no evidence of exudation

Test Cylinder	Sample Mass Loss (g)	% Exudation (Sample)	Filter Paper Mass Gain (g)	% Exudation (Filter Paper)
1	0.0411	0.0376	0.0161	0.0147
2	0.0238	0.0218	0.0169	0.0155
3	0.0357	0.0326	0.0240	0.0219

CONCLUSIONS

- ✓ A PBXN-9 analog utilizing Fluid Energy Milled (FEM) HMX was successfully developed, characterized, and evaluated as a collaborative effort between BAE Systems and DEVCOM AC
- ✓ The PBXN-9 FEM HMX formulation had equivalent performance compared to legacy PBXN-9
 - PBXN-9 FEM HMX: DV = 8.41 km/s (d = 1.72 g/cc)
 - Legacy PBXN-9: DV = 8.47 km/s (d = 1.74 g/cc)
- ✓ The PBXN-9 FEM HMX formulation had improved shock sensitivity, setback survivability, and mechanical properties compared to legacy PBXN-9:
 - LSGT testing resulted in 167.5 cards (legacy PBXN-9 LSGT = 205.0 to 222.0 cards)
 - Improved response in the SSFA test
 - Showed an improved response in the NSWC Setback Simulator test
 - Increase in strength, modulus, and strain at peak pressure

ACKNOWLEDGEMENTS & TEAM MEMBERS

CCDC AC

Erik Wrobel

BAE Systems

Brian Alexander

Indian Head

Joshua Felts Philipp Baldovi

QUESTIONS?

David Rydzewski Mike Van De Wal Sean Swaszek Caleb Owens Dr. Henry Grau Alex Gandzelko Rob Decker Ralph Acevedo Jason Semanek