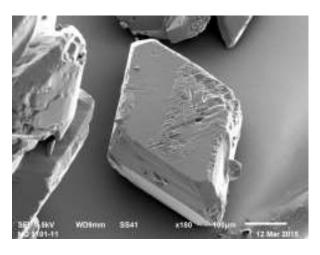
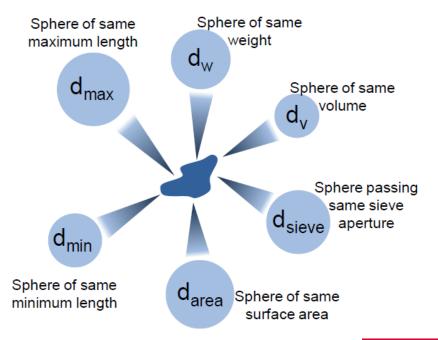

# Particle Size Image Analysis of Explosive Formulations & Ingredients ABSTRACT NUMBER IMEMTS 2021


Name: Dr. Teresa B Kirchner\*, Dr. Jeremy Headrick, Matt Hathaway, Alice Meadows, Kelly Smith, Joseph Renfro BAE Systems, Holston Army Ammunition Plant, Kingsport, Tennessee, United States 04/08/2021




## Particle Size Analysis

- Particles are 3-dimentional objects
- Unless the particles are perfect spheres, they cannot be described by a single dimension, such as radius or diameter
- Most methods define the particle size as an equivalent sphere having a shared property with the actual particle, such as volume, area, or length.
- Different measurement techniques use different equivalent sphere models and therefore will not give the same results for a given particle.







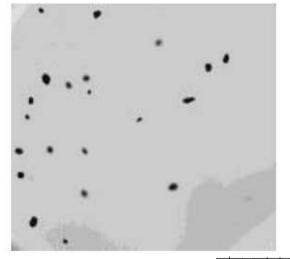


## Particle Imaging Analysis

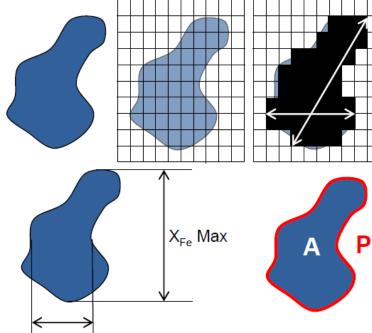
- Currently most explosives ingredients and granular formulations have particle sizes ranging from approximately 1 micron to 10 millimeters.
- Historically particle size analysis of explosive formulations have been performed by sieving.
- Particle size analysis of explosives ingredients have been done by sieving or laser diffraction methods.
- Particle Imaging Analysis is an alternative technique that can also be used to measure particles in these size ranges.

| 10 nm                  | 100 nm | 1 μm     | 10 μm    | 100 μm | 1 mm | 10 mm | 20 mm | 30 mm |
|------------------------|--------|----------|----------|--------|------|-------|-------|-------|
|                        |        |          |          |        |      |       |       |       |
|                        |        |          |          |        | Si   | eves  |       |       |
|                        |        |          |          |        |      |       |       |       |
|                        | La     | ser Diff | fraction |        |      |       |       |       |
|                        |        |          |          |        |      |       |       |       |
| Dynamic Image Analysis |        |          |          |        |      |       |       |       |
|                        |        |          |          |        |      |       |       |       |



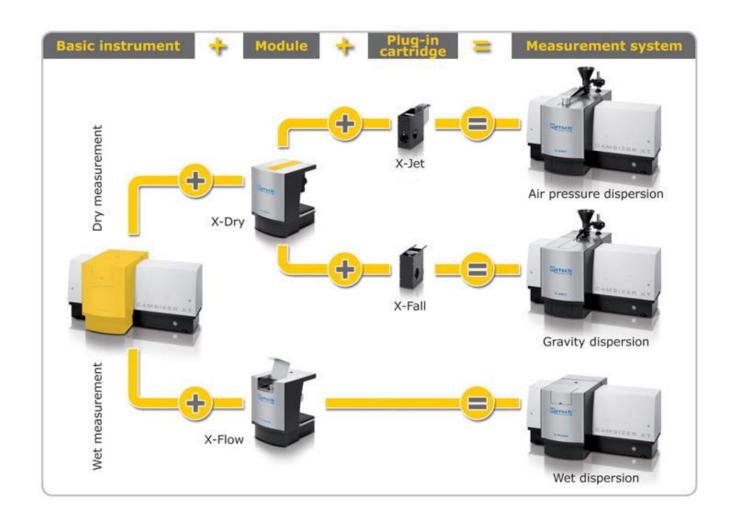






## Particle Imaging Analysis

- Samples are dispersed and passed in front of a digital camera where images are acquired.
  - Static
  - Dynamic
- The images are processed via software to segregate particles from background and to perform image analysis operations on each particle resulting in dimensional measurements.
- These particle measurements can be used to evaluate both size and shape.

Aspect Ratio = 
$$\frac{X_{c min}}{X_{Fe max}}$$
 Sphericity =  $\frac{4\pi A}{P^2}$ 







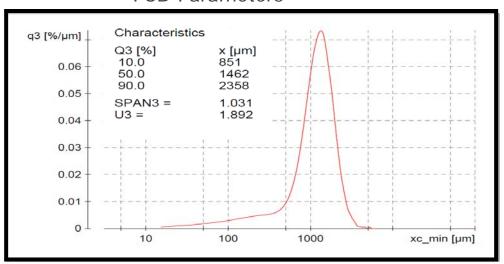

## Particle Imaging Analysis

- Interchangeable module and cartridges makes the system highly adaptable to different sample types.
- X-Dry X-Jet: Air dispersion
- X-Dry X-Fall: Gravity dispersion
- X-Flow: Wet dispersion





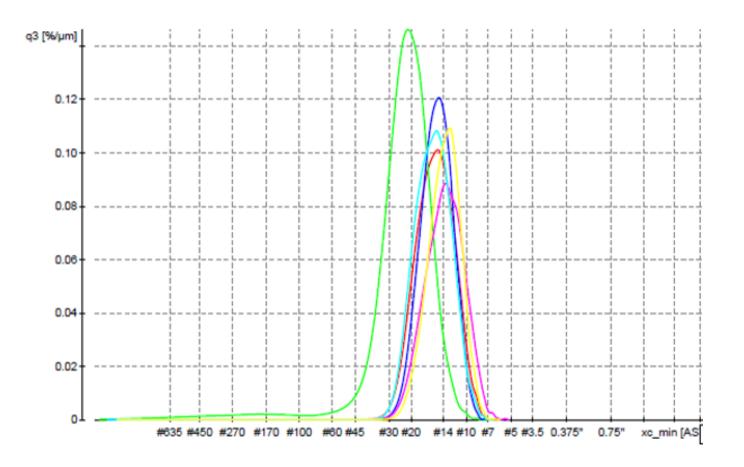
- Particles that are dry and free flowing can be analyzed by a vibration feed table and gravity dispersion.
- Materials fall freely past the camera.
- There is no physical means of dispersing agglomerates of particles in the system.






| Formulation Methods Developed |
|-------------------------------|
| Composition A5                |
| CXM-AF-7                      |
| LX-14/17                      |
| HMX Mains                     |
| IMX- 101/104                  |
| PBX-9502                      |
| PAX-3                         |
| PBXN-X (7, 9, 10)             |

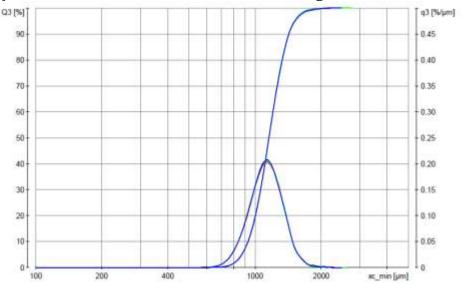



- Data
  - % Passing/Retained
  - Shape Parameters
  - Distribution curve
- Dynamic Image Analysis
  - Batch Information Retained
    - Reprocess data in the future
    - Assess Performance Issues or Optimize PSD Parameters

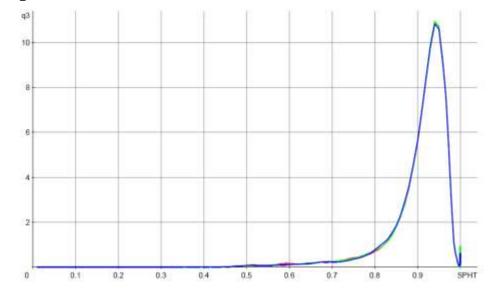


| Size class                                                              | [µm]                                               | p3 [%]                                                   | Q3 [%]                                                       | SPHT3                                                       |
|-------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|
| > 4750<br>2360 -<br>1700 -<br>1400 -<br>1180 -<br>850 -<br>180 -<br>0 - | 4750<br>2360<br>1700<br>1400<br>1180<br>850<br>180 | 0.2<br>9.8<br>24.7<br>19.9<br>16.2<br>19.2<br>9.5<br>0.5 | 100.0<br>99.8<br>90.0<br>65.3<br>45.4<br>29.2<br>10.0<br>0.5 | 0.894<br>0.902<br>0.904<br>0.901<br>0.895<br>0.879<br>0.823 |
|                                                                         |                                                    |                                                          |                                                              |                                                             |

| Size class                                                                                          | [µm]                                                                            | p3 [%]                                                                               | Q3 [%]                                                                                   | SPHT3                                                                                  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| > 3350<br>2360 -<br>1700 -<br>1400 -<br>1180 -<br>850 -<br>710 -<br>600 -<br>425 -<br>180 -<br>45 - | 3350<br>2360<br>1700<br>1400<br>1180<br>850<br>710<br>600<br>425<br>180<br>< 45 | 1.5<br>8.5<br>24.7<br>19.9<br>16.2<br>19.2<br>4.5<br>2.1<br>1.6<br>1.3<br>0.5<br>0.0 | 100.0<br>98.5<br>90.0<br>65.3<br>45.4<br>29.2<br>10.0<br>5.5<br>3.4<br>1.8<br>0.5<br>0.0 | 0.894<br>0.902<br>0.904<br>0.901<br>0.895<br>0.885<br>0.879<br>0.876<br>0.865<br>0.825 |
|                                                                                                     | ` 40                                                                            | 0.0                                                                                  | 0.0                                                                                      | 0.701                                                                                  |





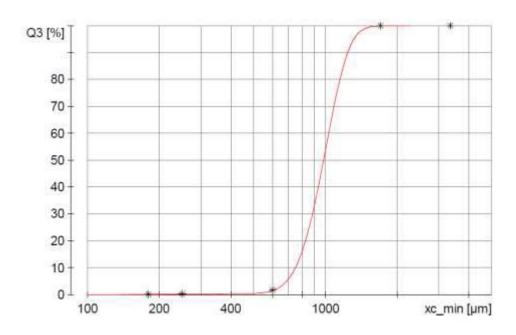


#### PBXN-X

- All data passed MIL-SPEC PSD
- PSD curve highlights differences.
- Formulation Advantages
  - Full Sieve Range
  - Information collected rapidly
  - Small sample size
  - Distinguishes PSD variation between batches that traditional sieving overlooks.





| 100       | 200 400  | 1000 2000 | ec_min [µm] |
|-----------|----------|-----------|-------------|
| Replicate | D10 (µm) | D50 (µm)  | D90 (µm)    |
| 1         | 926.1    | 1156.3    | 1425.7      |
| 2         | 928.3    | 1154.8    | 1422.8      |
| 3         | 928.9    | 1156.7    | 1425.7      |



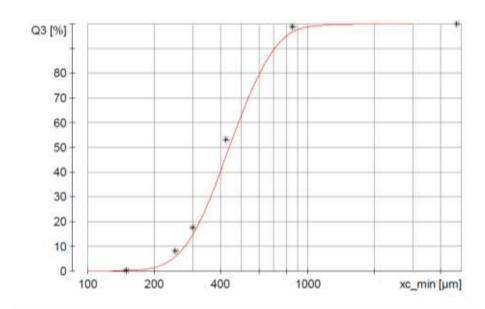

| Replicate | Sphericity | Symmetry | Aspect<br>Ratio |
|-----------|------------|----------|-----------------|
| 1         | 0.908      | 0.928    | 0.765           |
| 2         | 0.908      | 0.929    | 0.766           |
| 3         | 0.908      | 0.928    | 0.766           |

Replicate analysis of formulation products indicate good repeatability for both size and shape analysis



- Sample was analyzed by Image Analysis and then by sieving using sieve sizes from product specifications
- Good Agreement to sieving data however data only describes the extremes.




| Sieve # | Sieving<br>(% passing) | PIA<br>(% passing) |
|---------|------------------------|--------------------|
| #6      | 0.0                    | 0.0                |
| #12     | 0.0                    | 0.1                |
| #30     | 98.5                   | 98.4               |
| #60     | 1.4                    | 1.4                |
| #80     | 0.0                    | 0.                 |
| PAN     | 0.1                    | 0.1                |

RED – Cumulative Distribution (% passing)

\* - Sieving Data

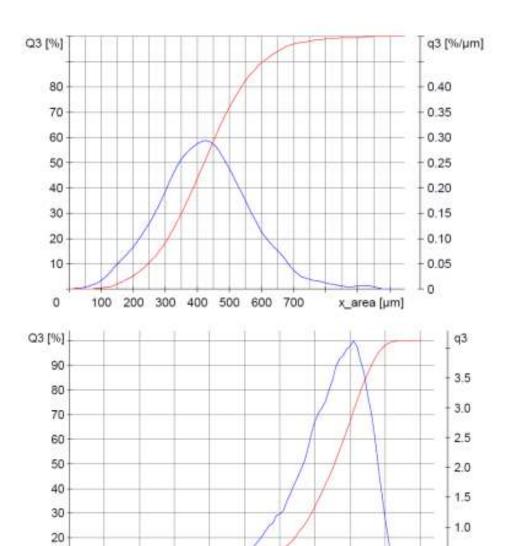


- Another sample was analyzed by Image Analysis and sieve sizes were selected based upon these results to better
  described the sample by sieving.
- Generally good agreement to sieving data
- Slight differences based upon orientation of particle when image acquired



RED – Cumulative Distribution (% passing)

\* - Sieving Data


| Sieve # | Sieving     | PIA         |  |
|---------|-------------|-------------|--|
|         | (% passing) | (% passing) |  |
| #4      | 0.0         | 0.0         |  |
| #20     | 1.2         | 3.3         |  |
| #40     | 45.5        | 50.3        |  |
| #50     | 35.7        | 31.7        |  |
| #60     | 9.4         | 8.8         |  |
| #100    | 7.9         | 5.7         |  |
| PAN     | 0.3         | 0.2         |  |

## Energetic Materials by Particle Image Analysis

- Dry fine particles that agglomerate can be analyzed by vibration feed table and air pressure dispersion
- Particles are mixed with a stream of compressed gas to break up agglomerates.
- Particles and gas stream exit out of a nozzle past the camera for measurement.

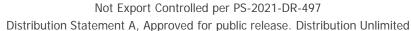






0.7

0.8

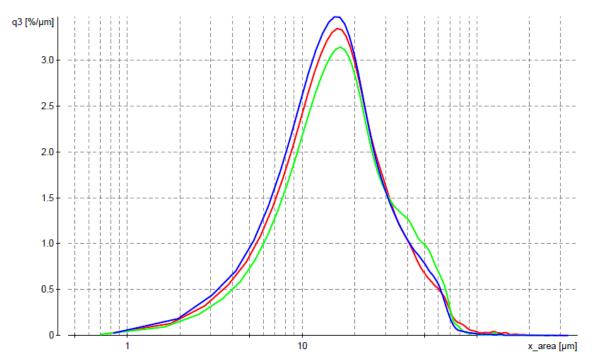

0.5

0.6

0.2

0.3








0.5

## Energetic Materials by Particle Image Analysis

- Fine particles that agglomerate can also be analyzed using a wet mode
- Particles are slurried in water. Agglomerates are broken up by sonication
- The slurry is pumped through a liquid cell past the camera for measurement.



| Energetic Materials Methods<br>Developed |
|------------------------------------------|
| TATB                                     |
| NQ                                       |
| NTO                                      |
| RDX                                      |
| HMX                                      |



## Summary

- Particle Imaging has been used to evaluate a variety of explosive formulations and ingredients.
- Imaging analysis has shown good agreement with sieving data for explosive formulations. Method is faster, less hands on, and easier to clean-up.
- Particle imaging analysis has shown the ability to distinguish differences in particle shape that other methods cannot detect.
- Data files can be stored and reprocessed to incorporate different discrete sizes in order to better characterize particle size for materials that have been shipped and for which a file sample is no longer available.

