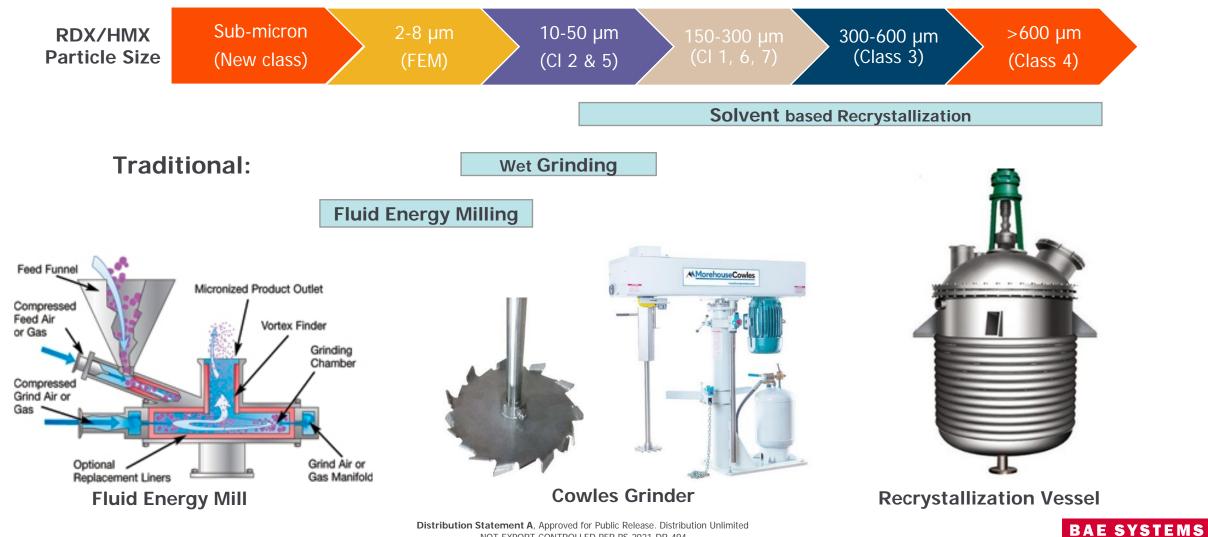
Improved Particle Size Reduction & Evaluation Technology for Energetics at HSAAP

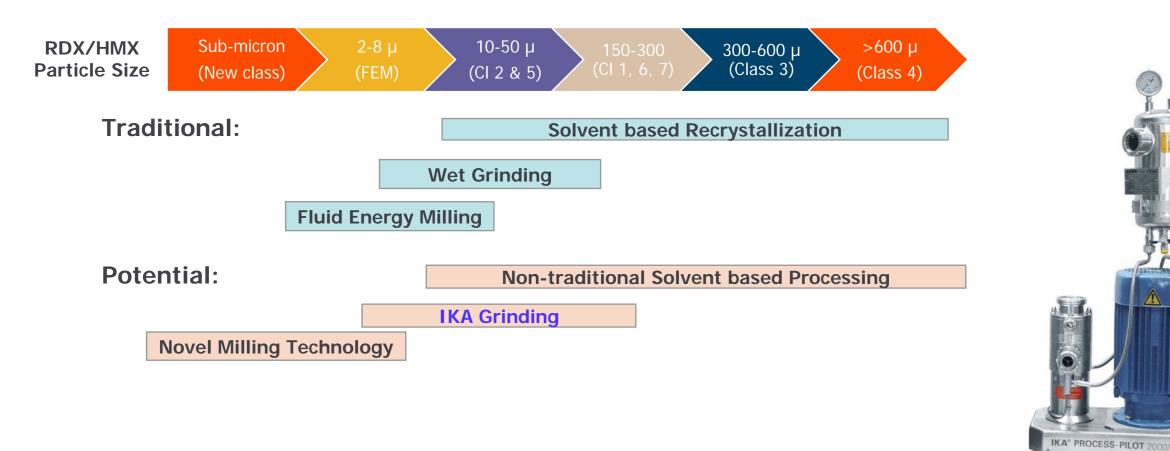
IMEMTS 2021

Dr. Jacob Morris*, Dr. Neil Tucker, Matt Hathaway, Mike Ervin BAE Systems, Holston Army Ammunition Plant, Kingsport, Tennessee, United States 7 April 2021


Overview

- The final particle size of traditional crystalline explosives (RDX/HMX) at Holston is controlled through a number of technologies:
 - Solvent Recrystallization
 - Wet-grinding
 - Fluid Energy Milling
- Evaluation of newer technologies could lead to reduced processing time and better control of process
- Technology requirements:
 - Ability to safely process explosives
 - Improvement in processing time/control vs. legacy technology
 - Ability to meet particle size/morphology requirements to serve as drop-in replacement
 - Cost to develop / implement technology

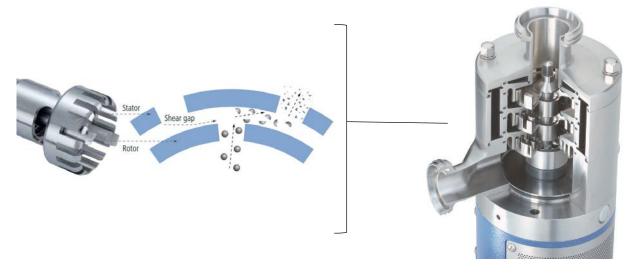
2



RDX/HMX Particle Size Technology

NOT EXPORT CONTROLLED PER PS-2021-DR-494

RDX/HMX Particle Size Technology



IKA Grinder: Evaluation for Replacement of Traditional Wet-Grinding Technology

IKA Grinder

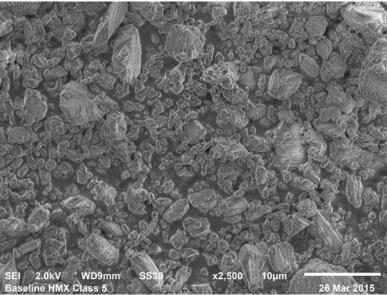
RDX/HMX IKA Particle Size Reduction Technology

High-Shear Dispersion

3-Stage Rotor-Stator Head

- Slurry-based particle size reduction technology
- Three–stage rotor-stator heads in series
 - Multiple size heads allow targeted PSD reduction
- Ability to vary power setting, recirculate slurry, and multiple units in series allows for further targeted PSD reduction
- Flexible low-cost technology
- Throughput: 500 L/hr (pilot unit)

IKA Grinder: High shear wet-grinding technique for safe particle size reduction of energetic crystals



HMX Class 5 (Pump Ground) used in number of legacy HSAAP Products

- Time / Energy inefficient process •
- Difficulty in reliably meeting targeted particle size •

Particle Size Attributes:

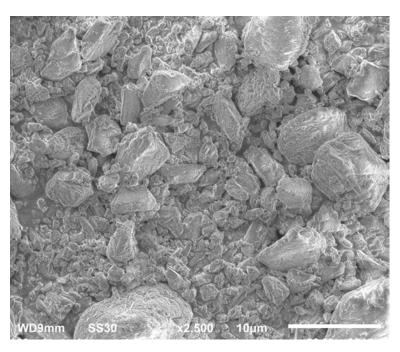
<u>lue</u>
7 µm
1 µm
64 μm
m²/g
g/mL

HMX Class 5

Э	a	0	J			

		STATUS AND AN ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDR
10th Percentile	1.57 μm	
50th Percentile	4.11 μm	
90th Percentile	16.64 μm	
urface Area	2.57 m²/g	
Gas Pycnometer)	1.91 g/mL	
		SEI 2.0kV WD9 Baseline HMX Class

Pump Grinder



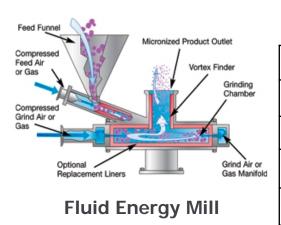
IKA Grinder

- Evaluation of **IKA Grinder** as replacement technology for pump grinder:
 - Reduction in processing time by >90%
 - Particle size/shape similar to pump ground material
 - Process to be fine-tuned in terms of concentration, power settings, recirculation time

Particle Size Attributes:

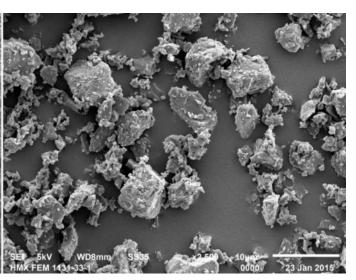
Analytical Test	<u>IKA Ground</u>	Pump Ground
Malvern, 10th Percentile	3.60 μm	1.57 μm
Malvern, 50th Percentile	7.10 μm	4.11 μm
Malvern, 90th Percentile	22.60 μm	16.64 µm
BET Surface Area	1.30 m ² /g	2.57 m ² /g
Density (He Gas		
Pycnometer)	1.91 g/mL	1.91 g/mL

HMX Class 5 with IKA Grinder



Evaluation of alternate particle size reduction technology to replace pump grinder:

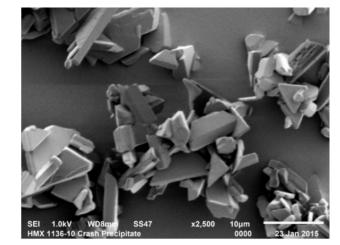
- Fluid energy mill
- Crash precipitation from solvent
- Spray atomization
- Lab RAM
- Ultrasonic Treatment
- Roll Mill
- Cowles Grinder
- Fluidized bed mill
- Planetary ball mill
- Super critical CO₂



- Evaluation of FEM as replacement technology for pump grinder:
 - Mature particle size reduction technology at HSAAP
 - Particle size/shape similar to pump ground material with material slightly finer
 - Viable processing alternative with some downsides:
 - Dry milling vs. wet milling
 - No improvement in processing time

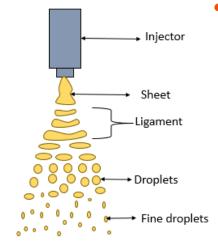
Particle Size Attributes:

Analytical Test	<u>FEM</u>	Pump Ground
Malvern, 10th Percentile	1.64 μm	1.57 μm
Malvern, 50th Percentile	3.49 μm	4.11 μm
Malvern, 90th Percentile	7.35 μm	16.64 μm
BET Surface Area	3.24 m²/g	2.57 m²/g
Density (He Gas		
Pycnometer)	1.91 g/mL	1.91 g/mL


HMX Class 5 with FEM

- Evaluation of Solvent Crash Precipitation as replacement technology for pump grinder:
 - Evaluation of batch/continuous processing
 - Particle size slightly larger than pump ground material w/ different morphology
 - Viable processing alternative with potential downsides:
 - Potential presence of impact-sensitive HMX polymorphs
 - Ability to control particle size at production scale

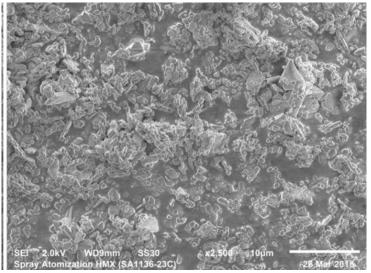
Particle Size Attributes:


<u>FEM</u>	Pump Ground
3.47 μm	1.57 μm
7.08 μm	4.11 μm
16.02 μm	16.64 μm
1.40 m ² /g	2.57 m ² /g
1.82 g/mL	1.91 g/mL
	3.47 μm 7.08 μm 16.02 μm 1.40 m ² /g

HMX Class 5 through Crash Precipitation

BAE SYSTEMS

Recrystallization Vessel

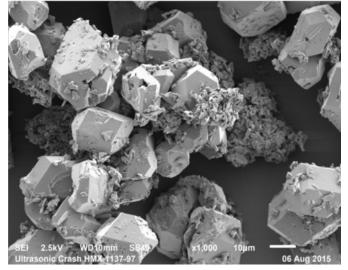


Spray Atomization

- Evaluation of Spray Atomization as replacement technology for pump grinder:
 - Use of solvent/anti-solvent spray atomization process
 - Particle size/shape similar to pump ground material
 - Viable processing alternative with potential downsides:
 - Unreliable control on particle size at laboratory scale
 - Large amount of solvent recovery required at production scale

Particle Size Attributes:

Analytical Test	<u>FEM</u>	Pump Ground
Malvern, 10th Percentile	1.80 μm	1.57 μm
Malvern, 50th Percentile	4.18 μm	4.11 μm
Malvern, 90th Percentile	11.91 μm	16.64 μm
BET Surface Area	3.82 m ² /g	2.57 m ² /g
Density (He Gas		
Pycnometer)	1.91 g/mL	1.91 g/mL



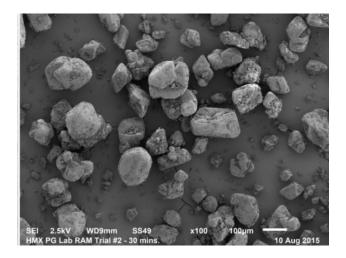
HMX Class 5 through Spray Atomization

- Evaluation of Ultrasonic Probe as replacement technology for pump grinder:
 - Use of ultrasonic probe in combination with solvent/anti-solvent process
 - Particle size/shape larger than pump ground material
 - Significant engineering required to overcome processing hurdles:
 - Significant particle size growth if material filtered slowly
 - Fine-tuning of processing parameters and probe required

Particle Size Attributes:

Analytical Test	FEM	Pump Ground
Malvern, 10th Percentile	9.59 μm	1.57 μm
Malvern, 50th Percentile	21.26 μm	4.11 μm
Malvern, 90th Percentile	38.05 μm	16.64 µm
BET Surface Area	0.52 m ² /g	2.57 m ² /g
Density (He Gas		
Pycnometer)	1.88 g/mL	1.91 g/mL

HMX Class 5 through Ultrasonic Probe


Ultrasonic Probe

- Evaluation of LabRAM as replacement technology for pump grinder:
 - Use of resonant acoustic energy to cause particle size attrition
 - Not a viable option for Pump grinder replacement
 - Further evaluation of LabRAM with solvent/antisolvent system a possibility

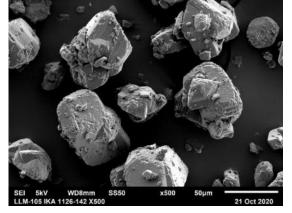
Particle Size Attributes:

Analytical Test	<u>FEM</u>	Pump Ground
Malvern, 10th Percentile	5.67 μm	1.57 μm
Malvern, 50th Percentile	67.32 μm	4.11 μm
Malvern, 90th Percentile	199.01 μm	16.64 µm

HMX Class 5 through LabRAM

LabRAM

Case Study: LLM-105


- Goal: Reduction in LLM-105 particle size through wet-milling technology
 - Cowles Grinder
 - IKA Grinder
- Targeting d₅₀ of ~60 microns
- While both technologies successful, IKA grinder was >90% faster to meet particle size target

Cowles Grinder

Particle Size Attributes:

Analytical Test	<u>IKA Grinder</u>	Cowles Grinder
Malvern, 10th Percentile	29.01 μ m	7.62 μm
Malvern, 50th Percentile	57.16 μm	48.01 μm
Malvern, 90th Percentile	98.74 μm	92.01 µm

LLM-105 (IKA)

LLM-105 (Cowles)

Summary and Path Forward

- Use alternate technologies to replace HMX Class 5 (Pump Ground)
 - IKA Grinder shows good promise as newer wet-milling technology
 - FEM HMX also shows promise and has production scale maturity
- Path Forward (IKA Grinder)
 - Further evaluation of alternate materials / particle size classes
 - Evaluation of IKA-ground material is various formulations
 - Further development of technology from pilot to production scale

Acknowledgements

- BAE Systems OSI Holston Army Ammunition Plant
 - Mr. Brian Alexander
 - Ms. Kelly Smith
 - Ms. Alice Meadows
 - Mr. Joseph Renfro
 - Mr. Gary Sizemore
 - Mr. Todd Dye
 - Mr. Tracy Kelly

Thank You

