

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Continuous Reactors for Energetic Materials Synthesis

Joseph Rheinhardt, PhD

Research Scientist III

CS Squared, LLC

Approved for Public Release; Distribution is unlimited.

Answering the "When" of Flow

- Advantages of Flow Chemistry: The Three C's
 - <u>Chemistry</u>
 - **C**ontrol
 - <u>**C**</u>ost
- Screening Reactions for Continuous
 - Calabrese and Pissavini Screening Framework
 - Roberge Reaction Classification Scheme
 - Reaction/Reactor Selection Matrix

Answering the "What" of Flow

- Transformers and Generators
- Survey of Commercial Off-The-Shelf Apparatus
 - Continuous Reactors
 - Continuous Crystallizers and Filters
 - Ancillary Equipment
 - Spectroscopic Tools
 - Pumps
 - Separators

Summary and Additional Resources

Answering the "When" of Flow

ADVANTAGES OF FLOW: THE THREE C's

- Chemistry
 - Safety: Smaller scale; No headspace; No accumulation of reactive or toxic intermediates
 - Expansion of the Reaction Space: "Forbidden" reactions are feasible in flow; Reactions in Novel Process Windows (high temperature, high pressure, increased concentration/solvent-free, explosive or thermal runaway regimes)

Control

- Seamless Scale Up: Scale up (numbering up) is faster and more reliable
- Versatility and Flexibility: Customizable and adjustable equipment; Ease of switching products; Flexibility to turn throughput up or down
- Increased space-time yield (increased throughput in smaller footprint)
- Steady-state, continuous process feedback
- Quality by Design (QbD)/Quality by Control (QbC)

• Cost

- Less energy, water, and raw material costs (solvents, cleaning fluid)
- Lower labor cost
- Less capital depreciation
- Increased product yield and quality

Jensen, K. *Microreactors in Discovery and Development, PoaC Symposium,* **2013**. Calabrese, G. S.; Pissavini, S. *AIChE Journal*, **2011**, *57(4)*, 828-834.

SCREENING REACTIONS FOR CONTINUOUS

Pressures exceed reactor capability?	Likely no benefit and/or not possible	Increasing applicability
Temperatures exceed reactor capability?		1
Chemistry not compatible with reactor?		
Equilibrium reactions?		
Solid precipitates?	Possible benefits, but with technical	
Very slow kinetics?	challenges	
Solid reactants or catalysts?		
Gaseous reactants?		
Homogeneous catalysts?		
Gas evolution?	Likely to benefit	
Reaction benefits from pressure > 120 Pa		
Unstable intermediates?		
Fast kinetics?		
Highly toxic reactants or byproducts?		
Reactions requires or benefits from T < -10 °C?		
Rapid mixing required?		
Highly exothermic?		
Over-reaction possible?		
Requires precise stoichiometric control?		+

ROBERGE REACTION CLASSIFICATION SCHEME

- Type A reactions
 - Very fast, typically < 1 s
 - Controlled by diffusion and mixing
 - Improved mixing/heat exchange may increase yield

Type B reactions

- Rapid reactions, typically 10 s to 30 min
- Kinetically controlled rate may be accelerated by increased temperature, pressure, or concentration

Type C reactions

- Slow reactions, > 30 min to hours
- Involve potential hazards such as autocatalysis or thermal accumulation
- Kinetics make reactions suitable for batch, but continuous offers improved safety or product quality

• Type D reactions

- Reactions that are not A, B, or C
- Should be intensified to at least Type C to be done in flow

Plouffe, P.; Macchi, A .; Roberge, D. M. Org. Proc. Res. Dev., 2014, 18, 1286-1294.

REACTION/REACTOR MATRIX

Rates/Phases	Homogeneous	Liquid-Liquid	Gas-Liquid	Solid-Liquid
Туре А	Plate SZ/TG	Plate LL	Plate LL	CSTR/ Packed Bed
Туре В	Plate SZ/TG Coil	Plate LL Coil pulsated	Plate LL Coil pressure	CSTR/ Packed Bed
Туре С	Static mixer Coil	State mixer Coil pulsated	Static mixer Coil pressure	Coil pulsated

Plouffe, P.; Macchi, A .; Roberge, D. M. Org. Proc. Res. Dev., 2014, 18, 1286-1294.

Answering the "What" of Flow

TRANSFORMERS AND GENERATORS

Transformers

Oxidation Modules

- O₂ via two-feed approach
- Tube in tube reactor
- Homogeneous oxidant & T-mixer

Reduction Modules

- H₂ via tube in tube combined with catalyst
- In situ H₂ generation—pressurized gas-liquid mixer & packed bed reactor
- Homogenous reductions (DIBALH)

Nitrations

- Mixed acid nitrations
- Nitration using acetyl nitrate (HNO₃-Ac₂O-AcOH)
- Alternative Nitration Condition (N₂O₅ + TFE; NH₄NO₃-H₂SO₄)

Olefinations

- Polymer-assisted HWE olefination using packed bed reactor
- Wittig reaction using SS coil at 210 °C

Guidi, M.; Seeberger, P. H.; Gilmore, K. *Chem. Soc. Rev.*, **2020**, *49*, 8919-8932. Dallinger, D.; Gutmann, B.; Kappe, C. O. *Acc. Chem. Res.*, **2020**, *53*, 1330-1341.

Continuous Reactors for Energetic Materials Synthesis

Commercial-Off-The-Shelf Apparatus

Uniqsis FlowSyn	 All PTFE or PTFE-Hastelloy construction available Temperature: -70 to +260 °C; Pressure: 100 bar Data Logger and FlowControl[™] Software Plan experiments; Monitor and log temperature, pressure, and flow rate Wireless or remote control over LAN Up to 3 temperature zones and 3 reagent inputs available Available LED Photoreactor
Vapourtec RS-400	

© Vapourtec Ltd. All rights reserved.

- PFA or Hastelloy construction available
 - Temperature: -70 to +250 °C; Pressure: 50 bar
- Flow Commander[™] Software
 - Plan experiments; Monitor and log temperature, pressure, and flow rate
 - API Package can be driven by .NET Software Framework
- Up to 4 reactors and 4 reagent inputs available
- Available Photoreactor (Hg lamp or LED) and Electrochemical reactor

Ehrfeld Modular MicroReaction System (MMRS)

© Ehrfeld Mikrotechnik BTS GmbH. All rights reserved.

- Hastelloy construction available
 - Temperature: -20 to +200 °C (-100 to +600 °C); Pressure: 100 bar
- Integrates with LabManager[®] automation system from HiTec Zang
 - Consists of a control unit and LabVision[®] visualization and automation software
- More than 60 different microreaction modules
- Available Photoreactor (UV lamp or LED)

Uniqsis FlowSyn

www.uniqsis.com

Gutman, B. et al. Angew. Chem. Int. Ed., **2010**, *4*9, 7101-7105.

Vapourtec RS-400

© Vapourtec Ltd. All rights reserved.

Brocklehurst, C. E.; Lehmann, H.; La Vecchia, L. Org. Process Res. Dev., 2011, 15, 1447-1453.

Ehrfeld Modular MicroReaction System (MMRS)

© Ehrfeld Mikrotechnik BTS GmbH. All rights reserved.

Köckinger, M. et al. *Org. Process Res. Dev.*, **2020**, *24*, 2217-2227. Sagmeister, P. et al., *React. Chem. Eng.*, **2020**, *5*, 677-684.

LL-Mixer 0.24 mL internal volume

Corning Advanced-Flow[™] Reactors

© 2018 Corning Incorporated © 2016 Corning Incorporated

- Borosilicate glass or SiC (G1 and larger) construction available
 - Temperature: –60 to +200 °C; Pressure: 18 barg
 - Metal-free system for high chemical durability
- Integrated thermostat; plug and play system with data monitoring
 - Lab Photo Reactor Option
 - Tunable LED source with 6 different wavelengths; wireless control

Chemtrix Labtrix[®] S1 and Protrix[®]

© Chemtrix BV. All rights reserved.

- Inert wetted materials:
 - Labtrix[®] S1: PTFE, ETFE, FFKM, Glass
 - Protrix[®]: PTFE, FFKM, SiC
 - Temperature: -20 to +195 °C; Pressure: 20 bar
 - Volume: 1 to 19.5 μL (Labtrix[®] S1); 1 to 13.5 mL (Protrix[®])
- Dedicated software for automated data logging and sample collection
- Protrix[®] processes can be directly scaled to production (Plantrix[®])

AM Technology Coflore[®] ACR

© AM Technology. All rights reserved.

- Hastelloy reactor block; Hastelloy or ceramic agitators
 - Temperature: -40 to +140 °C; Pressure: 10 bar
- ACR cell block has 10 reaction cells connected via interstage channels
 - Sample points, addition points, & temp measurement can be added to any reaction cell
- Agitating platform provides horizontal agitation to reactor block for mixing
- Temperature data & agitation rates can be accessed by USB or LAN

SCALABLE REACTORS

Corning Advanced-Flow[™] Reactors

© 2018 Corning Incorporated © 2016 Corning Incorporated

Chemtrix Labtrix[®] S1 and Protrix[®]

© Chemtrix BV. All rights reserved.

MsO^V 0Ms 0.10 M in CH₃CN NaN₃ 0.11 M in H₂O

MsO

50 °C

MsO\

91% yield

AM Technology Coflore[®] ACR

© AM Technology. All rights reserved.

Browne, D. L.; Deadman, B. J.; Ashe, R.; Baxendale, I. R.; Ley, S. V. *Org. Process Res. Dev.*, **2011**, *15*, 693-697.

SPINNING DISC REACTORS

Flowid SpinPro R10

© Flowid BV - All rights reserved

SiC Spinning Disc Reactor

- Three-stage reactor; 19 mL total volume
- Temperature: -20 to +160 °C; Pressure: 10 bar
- Discs can be mechanically or chemically modified
- Suitable for precipitations and for controlled emulsification
- Pilot (R300) and production (R1000) scale units available

KinetiChem Synthetron[™]

© KinetiChem, Inc. All rights reserved.

- Hastelloy C-22 surfaces; inert fluoropolymer seals
 - 10 µL to 1.3 mL lab scale spinning disc reactor
 - Temperature: -40 to +150 °C; Pressure: 10 bar
- 1,000 W motor; speed up to 14,000 RPM
- TouchScreen Allen Bradley Micro800 series controller/data logger
 - 4 x K-type thermocouple collection ports
 - 2 x 4-20 mA pressure transmitters

SPINNING DISC REACTORS

Flowid SpinPro R10

© Flowid BV - All rights reserved

Hees, M.; Georgi, U.; Bachus, H.; Muller, K-S. US Patent Office US 2018/0346655, December 6, 2018

KinetiChem Synthetron[™]

© KinetiChem, Inc. All rights reserved.

Slocum, D. W. et al., Tetrahedron Lett., 2010, 51, 4793-4796.

NITECH[®] SOLUTIONS

DN25 Oscillatory Baffled Reactor (OBR)

- Borosilicate glass vessel; 25 mm diameter; 110 mL internal volume
- Temperature: -20 to +120 °C; Pressure: ambient
- Oscillator Frequency: 0.1 to 3 Hz in 0.1 Hz increments
- Oscillator Stroke: 5 to 40 mm in 1 mm increments
- May be configured for batch, semi continuous, or continuous operation
- Optimized OBR parameters may be used for COBC

DN6/DN15 Continuous Oscillatory Baffled Crystallizer/Reactor (COBC/R)

- Glass (DN6/DN15) or Hastelloy (DN15); 200 mL (DN6)/1.25 L to 4.5 L (DN15) internal volume
- Temperature: 0 to +100 °C (DN6); -20 to +150 °C (DN15)
- Pressure: 0 to 3 bar (DN6); 0 to 10 bar (DN15)
- Oscillator Frequency: 0.1 to 6 Hz (DN6); 0.1 to 3 Hz (DN15)
- Oscillator Stroke: 2 to 25 mm (DN6); 11 to 68 mm (DN15)
- ATEX compliant DN15 models available

© NiTech[®] Solutions Ltd. All rights reserved.

Peña, R.; Olivia, J. A.; Burcham, C. L.; Jarmer, D. J.; Nagy, Z. K. *Cryst. Growth Des.*, **2017**, *17*, 4776-4784. Kacker, R.; Maaβ, S.; Emmerich, J.; Kramer, H. AlchE J., **2018**, *64*, 2450-2461.

ALCONBURY WESTON CCF50 AND CCF20-LITE CONTINUOUS CAROUSEL FILTER

• CCF50 For Hazardous Locations:

- Meets DOE Standard 1212 for Energetic Materials
- No/Minimal particle shear
- Up to three wash solvent reservoirs
- 1 moving part
- 50 mm ports 40 g of material per port
- Entry-to-exit time typically 10 to 15 minutes
- Cake wetted to set parameters before discharge
- Optional dryer
 - Dry gas fed to mass spec to monitor solvent content

CCF20-Lite Features:

- New product provides CCF20 functionality w/o ancillaries
- Auto transfer function from external reactor/crystallizer
- Automated filtration and wash cycle
- Optional N₂ blanket system
- Optional cooling vessel for wash solvent

BLAZE METRICS[™] AND TORNADO SPECTRAL SYSTEMS

© BlazeMetrics. All rights reserved.

One Probe with Multiple Integrated Technologies – Simultaneous Acquisition:

- **Microscopy:** high contrast, high resolution, highest dynamic range for understanding single dispersed phase and multiple phase, multiple component particle systems
- **High Dynamic Range Turbidity (HDR):** dynamic range measuring from low to extremely high dispersed phase concentrations; can track change at nano or micron scale, measure optical transitions in liquid and/or solid phase, operate in translucent to black solutions
- Advanced Chord Length (A-CLD): removes flow speed artifacts and reduces multiple other artifacts of scanning tools; track changes in particle size, count, and shape
- **Particle Focused Raman (PFR):** can dramatically increase Raman signal captured from dispersed phase particles; find and track polymorphs, solvates, hydrates, impurities; differentiate multiple component systems.
- Immersed Probe Tip Material: Hastelloy 22, 276, SS, or custom
- Window Materials: Sapphire, Kalrez, Nickel, and Gold plate
- **Temp:** -10 to 100 °C (-10 °C requires N₂ purge)
- Pressure: 6 bar (standard); 22 bar (optional)
- HyperFlux[™] Pro Plus Raman
 - 200–3300 cm⁻¹ optical range
 - Laser Power: 20 mW to 495 mW (ATEX compliant)
 - Excitation wavelength: 785 nm

 $\ensuremath{\mathbb{C}}$ Tornado Spectral Systems. All rights reserved.

MAGRITEK BENCHTOP NMR

- Specifications
 - 43, 60, or 80 MHz (¹H)
 - 23" x 17" x 16"
 - 120 lbs
 - 110-240 AC, 60 Hz
 - Operating Temp: 20 to 25 °C
 - 2 G line completely inside spectrometer

- Available Pulse Sequences
- Proton
 - 1D
 - Paramagnetic
 - 2D COSY
 - 2D TOCSY
 - 2D JRES
 - T₁, T₂
 - Reaction Monitoring

- Carbon
 - 1D
 - DEPT
 - HETCOR
 - HMBC
 - HMQC
 - HSQC
 - HSQC-ME
- Optional third nuclei: ⁷Li, ¹¹B, ¹⁵N, ²³Na, ²⁹Si, ¹⁹F, and ³¹P

Vapourtec SF-10

- © Vapourtec Ltd. All rights reserved.
- Self-priming
- Flow rate: 0.02 to 10 mL min⁻¹
- Max pressure: 10 bar
- Pumps solutions, suspensions, light slurries, and gasses
- Versatile options for external control
- Operating Modes:
 - Constant flow rate or ramped flow rate
 - Volume dosing
 - Gas delivery
 - Pressure controller

Fuji Techno SMP

www.fujitechno.co.jp/english

- Super Metering Pump is pulsefree; metal-free version available
- Able to feed liquid at ± 0.1% of specified flow range
- Max flow rate: 15.3 to 108.6 mL min⁻¹
- Max discharge pressure: 20 bar
- Applications
 - Additive feed into extruder
 - High precision dosing
 - Line mixing
 - Emulsification

Teledyne ISCO

[©] Teledyne ISCO. All rights reserved.

- Seven D-series pumps
 - Flow rates: < 1 μl min⁻¹ to 400 mL min⁻¹
 - Max pressure: > 2000 bar
 - HLf-series pumps conform to UL Class I, Div 2, Groups A, B,C, & D, T4 environments
- Air and electric valve continuous flow systems
 - Max Temp: 160 °C (air); 200 °C (electric)
 - Flow rates: 1 µl min⁻¹ to 133 mL min⁻¹
 - Max Pressure: > 1300 bar

Zaiput Flow Technologies

Liquid–Liquid/Gas–Liquid Separators

- Provide continuous separation of immiscible phases by exploiting differences in wettability of a porous membrane
- Max Temperature: 130 °C; Max Pressure: 20 bar
- Wetted parts: ETFE, PFA, FEP, PTFE
- 0.5 mL internal volume; 0 10 ml min⁻¹ total flow rate

Multi-Stage Extraction Platform

- Bench-scale tool for countercurrent liquid-liquid extraction
- Max Temperature: 80 °C
- Wetted parts: ETFE, PFA, FEP, PTFE, FFMK, PVDF
- ~3 mL per stage internal volume, 0 10 ml min⁻¹ total flow rate

© Zaiput. All rights reserved.

CINC Centrifugal Extractors

© CINC Deutschland GmbH & Co. KG

- Continuous mixing / extraction / separation in one step
- Device can be retrofitted to increase the mixing time in a larger mixing volume
- Lab scale results easily scaled up to production
- Hastelloy C22 construction available; ATEX compliant
- Temperature –30 to +130 °C; Pressure: 20 bar
- 0 1000 ml min⁻¹ total flow rate

HYDROGEN GAS GENERATORS

© ThalesNano, Inc. All rights reserved.

ThalesNano H-Cube[™] Series

- Hydrogenation without cylinders
- Electrolytic cells generate H₂ up to 60 NmL/min and 100 bar
- Temperature range: 10 to 150 °C
- Flow rates: 0.3 to 3 mL/min

© ThalesNano, Inc. All rights reserved.

ThalesNano H-Genie[™] High Pressure H₂ Generator

- Generates \geq 99.99% purity H₂
- Gas flow range: 0.1 to 1 NL
- Pressure range: 1 to 100 bar
- Temperature range: 10 to 150 °C
- Suitable for batch, continuous, and balloon fill operation
- Monitors and records H₂ consumption
- Uses < 1 µS cm⁻¹ water
- Requires ion filter for H₂O reservoir (consumable)

SUMMARY AND ADDITIONAL RESOURCES

- Advantages of flow chemistry
 - Safety
 - Expansion of reaction space to include "forbidden" reactions
 - Lower CAPEX and OPEX
 - Reduced footprint
 - Ease of scale-up
- Advances in continuous reactor technology have expanded the equipment
 capability envelope to accommodate an increasing number of process demands

Additional Resources

- *Flow Chemistry*, Volumes 1 & 2 by F. Darvas, G. Dormán, and V. Hessel (Eds.)
- The Hitchhikers Guide to Flow Chemistry, Chem. Rev., 2017, 117, 11796–11893.
- Flow Chemistry and Continuous Processing Conference (virtual) 10 12 May, 2021
- Flow Chemistry Congress 2021, Boston, MA (Dates to be confirmed)
- Questions?
 - joseph.rheinhardt@csssquaredllc.com

ACKNOWLEDGEMENTS

• This work was funded by the following Prime Contract/Subcontract:

- Prime Contract No. W911NF-15-D-0014 Task/Delivery Order No. W911NF18F0061 from the US Army Contacting Command
- Leidos Subcontract No. P010220377
- The presenter would like to acknowledge the support and guidance of the following individuals:
 - Mr. Anthony Di Stasio, Deputy Director, DPA Title III Program, Industrial Policy, OUSD (A&S)
 - Dr. Kimberly Spangler, Program Manager, Joint DoD/DOE Munitions Program OUSD (R&E)
 - Dr. Paritosh Dave, Senior Program Manager, Leidos