

NATO AC/326 SG/B Ammunition Systems Design and Assessment

Insensitive Munitions Test STANAG Updates (Part 2)

Ken Tomasello

Chairman AC/326 SG/B

Acknowledgements

Co-authors

Christophe Jacq, Quentin Weisse DGA Missiles Testing (FRA MoD), France Ernest Baker, Matt Ferran Munitions Safety Information Analysis Center (NATO), Brussels,

Michael Sharp

Belgium

Defence Science & Technology Edinburgh (AUS DoD), Adelaide, Australia

Outline

- BLUF
- Background
- NATO Documentation Policy
- IM Standards Hierarchy
- AOP-39 Update (Edition D)
- SRD AOP-39.1
- Status of IM Test Standards
- IM Test Procedure AOP Version Update
- Future IM/HC Harmonization
- Concluding Remarks

- During the past five years all seven of the NATO Insensitive Munitions (IM) test STANAGs and Allied Publications (AP) have been updated.
- Each document has been updated to the current NATO standardization requirements spelled out in AAP-03K.
- The overarching IM test documents STANAG 4439 and AOP-39 (*"Policy on the Development and Assessment of IM"*) were part of the update.
- The guidance provided by the updated standards will ensure more consistent testing and evaluation of ordnance hazard assessment testing.

Background

- Last coordinated publication of IM Test STANAGs April 2003
- STANAG 4439 / AOP-39 revised twice since last Test STANAG update
 - Resulting inconsistencies
- Changing organisation and structures
- Opportunity with transition of Test STANAGs to AOPs

NATO Documentation Policy

Now

NATO Policy on document structure: AAP-03(K)

Before

NATO

OTAN

- STANAG : STANdardization AGreement (cover document)
- AOP : Allied Ordnance Publication (technical document)
- SRD : Standard Related Document (recommendations)

Differences in ratification and promulgation:

NATO Documentation Policy

Standardization Agreement (STANAG)

- "...a NATO standardization document that specifies the agreement of member nations to implement a standard... in order to meet an interoperability requirement."
- No technical content.
- Has to be ratified by a minimum number of nations

Allied Publication (AP)

- Technical content policy, requirements etc.
- Promulgated once covering STANAG has been ratified
- Change process:
 - Minor changes Version Update (Ed. A V1 → Ed. A V2) update of STANAG not reqd
 - Major changes Edition Update (Ed. A V1 → Ed. B V1) STANAG requires update & ratification

Standards-Related Document (SRD)

- "...a NATO standardization document that facilitates understanding and implementation of one or more Allied standards"
- Provides additional data and information, but no policy or requirements (e.g. manuals, catalogues)
- All changes approved by silence procedure not update to STANAG required.

IM Standards Hierarchy

NATO

OTAN

AOP-39 Update (Edition D)

- Two strands of work for AOP-39 update
 - Review of Test Conduct and Reporting (Annex H)
 - Review of IM Response Descriptors (RD) (Annex I)
- Annex H: Largely removed
 - Common aspects of conduct and documentation in SRD
 - Technical aspects in individual test AOPs
 - Test specific conduct and reporting in individual test AOPs
 - NB remaining elements now superseded by publication of 6 full-scale AOPs Annex H will be removed from next Edition of AOP-39
- Annex I
 - IM Response Descriptors updated
 - Fragment with energy level > 20 J at 15 m, regarding its mass and nature: Steel, Aluminum, Tungsten and HDPE
 - Articles Under Test more defined and prescribed
 - Calibration Testing promoted and more fully prescribed

SRD AOP-39.1 (Edition A)

- Common aspects of conduct and documentation
 - Test framework, organization and responsibilities
 - Test program
 - Test planning and guidance
 - Test specific considerations
 - Documenting
 - Test conduct
 - Reporting

Current Status of Test Standards

Standard	Title	Edition	Date
STANAG / AOP-4240	Fast Heating Munition Test Procedures	Ed A V1	NOV 2018
STANAG / AOP-4241	Bullet Impact Munition Test Procedures	Ed A V1	NOV 2018
STANAG / AOP-4382	Slow Heating Test Procedures for Munitions	Ed A V1	MAR 2020
STANAG / AOP-4396	Sympathetic Reaction Test Procedures for Munitions	Ed A V1	DEC 2020
STANAG / AOP-4496	Fragment Impact Test Procedures for Munitions	Ed A V1	MAR 2019
STANAG / AOP-4526	Shaped Charge Jet Munition Test Procedure	Ed A V1	NOV 2018

NATO

OTAN

All available on website of NATO Standardization Office: https://nso.nato.int/

AOP-4240: Fast Heating

- Test Methods *Modified*
 - Test Method 1: Large pool fire
 - Test Method 2: Mini pool fire
 - Test Method 3: Fuel burner fire NEW
 - Characterized by average heat flux > 80 kW/m² over 30 s period once 800 °C is reached
- Themocouples Modified
 - Minimum 6 TC: (40-60 mm) fore, aft, starboard, port, above and below
- Conformity Modified
 - Taverage > 800 °C measured by all TC
 - 550°C under 30 s measured by all TC

US NSWCDD 3.7 m square propane burner

AOP-4241: Bullet Impact

Test Methods – Modified

- Test Method 1: 3 12.7 mm AP M2 projectiles at 850 ± 20 m/s (600 ± 50 rounds/min)
- NEW
- Test Method 2: 1 12.7 mm AP M2 projectile at 850 ± 20 m/s
 - Test Method 3: 1 or several projectiles projectile and velocity determined by THA

Annex A: Recommendations aiming point and target area
Annex B: Specifications 12.7 mm AP projectiles

AOP-4382: Slow Heating

- Test Methods Modified
 - Test Method 1: Preconditionning at 50 ± 3°C until thermal equilibrium of the test item, then Heating Rate 15 °C/hr until reaction occurs
 - Test Method 2: Heating Rate determined by THA
 - Test Method 3 (UN HC): 3.3 °C/hr until reaction occurs possibility to precondition at Treaction – 55°C (estimated)
 - Thermocouples Modified
 - 6 required TC at 40-60 mm around the test item, rather than 4
- NEW Annex A: Methods to estimate the soak time at 50 °C New T(°C) 50°C3.3°C/hr Time (hr)

AOP-4396: Sympathetic Reaction

Single Test Method (based on donor initiation)

- If designed to detonate, initiate the donor munition in the design mode Unchanged
- For munitions which are not designed to detonate, initiate the donor munition(s) with a credible threat that produces a worst-case response (e.g. shaped charge jet, explosive charge etc.) – Modified
- Sand / dirt etc. not to be used for simulating external confinement Modified
- Baseline test: recommendation to perform a baseline test in order to determine the blast, fragmentation and penetration signature of the donor test item(s), and the fragmentation and spatial distribution of inert acceptors.
- Additions in SRD AOP-39.1
- NEW

NEW

- SR configuration examples
- Clarification of what is the test item in SR tests
- Addition of definitions for donor/acceptor
 MEW munition in official NATO terminology

AOP-4496: Fragment Impact

- Test Methods Unchanged
 - Test Method 1: 2530 +/- 90 m/s
 - Test Method 2: 1830 +/- 60 m/s

Accuracy at impact

- Set to ensure response mechanism under consideration is tested
- Test item dependent
- Approved by National Authorities

Small items: Hit the targeted area

NEW

NEW

Orientation of the fragment at impact

Angular deviation should be limited to ± 10°

Brinell Hardess of the fragment – Modified 190 < HB < 270 Distribution Statement A: Approved for public I

 $\emptyset = ?$

NATO OTAN

AOP-4526: Shaped Charge Jet

Test Methods – Modified

Test Method 2: SCJ supported by means of a THA

NEW

Characterization of the SCJ

- V²d at target between 120 and 140 mm³/µs²
- Jet diameter at target between 2.5 and 3.5 mm

Previous: STANAG: Rockeye 50 mm New: SC 81 mm LX-14 (USA); France : CCEB62

IM Test AOP Version Update

- Due to long period of development, Editorial Working Group formed under AC/326 SG/B to review consistency & formatting of all 6 IM test AOPs
- Commenced Spring 2020 virtual meetings every 2 weeks
- Work is subject of a separate presentation
 - Dan Pudlak Working Group Chair

Harmonization of IM & HC Standards

- Despite similarities in testing protocols employed by IM and Hazard Classification (HC) communities, a harmonized approach to testing has yet to be achieved
- IM/HC Harmonization Working Group established under AC/326 SG/B to explore the alignment of IM & HC standards and practices
- Work is subject of a separate presentation

NATO

OTAN

- Catherine Goodwin - Working Group Chair

Concluding Remarks

- Updated editions of all 6 full-scale NATO IM test standards have now been promulgated, along with STANAG 4439 / AOP-39 / SRD AOP-39.1
 - Those involved in testing should ensure that they are now working to the latest standards.
- Ongoing work to review test standard consistency & formatting
 Due to publish Version updates in 2021
- Longer-term work aimed at harmonizing HC and IM testing into a combined standard structure

QUESTIONS?

References

E. Baker and D. Hubble, "Slow Heating Test Thermal Equilibrium and Maximum Reaction Temperature", 2019 Insensitive Munitions & Energetic Materials Technology Symposium, Seville, Spain, November 2019.

E. Baker, "An International Review of the Sympathetic Reaction Test", MSIAC Report O-203, December 2018.

E. Baker, "Slow Heating Testing Survey and Historical Events Reviewt", MSIAC Report O-195, October 2018.

D. Hubble, "Analysis of the Ramifications of Increasing the Slow Cook-off Test Heating Rate", 2019 Insensitive Munitions & Energetic Materials Technology Symposium, Seville, Spain, November 2019.

C. Jacq, K. Tomasello, E. Baker and M. Sharp, "Review and Update of Insensitive Munitions Test Procedures", 2019 Insensitive Munitions & Energetic Materials Technology Symposium, Seville, Spain, November 2019.

K. Tomasello, C. Jacq, E. Baker and M. Sharp, "NATO AC326 SG/B: Ammunition Systems Design and Assessment – IM Test STANAG updates", 2019 Insensitive Munitions & Energetic Materials Technology Symposium, Seville, Spain, November 2019.