SPACE DEVELOPMENT AGENCY

Delivering Capabilities

8 March 2021 Dr. Derek Tournear Director, SDA OUSD (R&E)

SDA's INITIAL PRODUCTS

Beyond-Line-Of-Sight (BLOS) targeting for time-sensitive ground and maritime targets

Hypersonic and advanced missile threat warning and tracking

SDA's architecture endeavors to perform the following functions from space:

- Detect threat systems
- Track threat systems
- Identify threat systems
- Develop targeting solutions
- Distribute targeting data directly to warfighters

...to close kill chains precisely and at a currently unattainable pace

Define and monitor the Department's future, threat-driven space architecture and accelerate the development and fielding of next-generation space capabilities

Resilient military sensing and low-latency data transport by means of a proliferated low-earth orbit space architecture

INNOVATOR'S DILEMMA – SDA THE CONSTRUCTIVE DISRUPTOR

NTS-3 - example of what comes out of an Innovation Office in industry. The L3Harris Innovation office was completely fenced from P&L oversight

SDA'S NATIONAL DEFENSE SPACE ARCHITECTURE (NDSA): LAYERED ARCHITECTURE APPROACH

Battle Management

Navigation

Space Transport Layer

Custody

Layer

11

Rapid Response Launch

Proliferated Ground C2

A global, persistent, low-latency data and communications transport layer

Indications, warning, tracking, and targeting of advances missile threats

24x7, all-weather constant custody of time-sensitive targets

Deterrence

Layer

Commercially-Derived

User Equipment

enable time-sensitive kill chain closure Emerging capabilities such as space

Low-latency battle management to

SUPPORT

situational awareness and rapid access in cislunar volume

Position, navigation, and timing for GPS-denied environments

GROWING WARFIGHTER CAPABILITY RAPIDLY

	FY20 Ready to Fly	FY21 FY22 FY23 In Execution	FY24 FY25 In Design
NDSA Layer	Risk Reduction Demo (FY20-21)	Tranche O Capability (FY22)	Tranche 1 Capability (FY24)
Data & Comm Transport	Demonstrate very low latency data transport, to include optical satellite crosslink and direct downlink	 Periodic regional access Low-latency data connectivity Study data directly to weapons Demonstrate data disseminated to theater 	 Persistent regional access Low-latency data connectivity Data directly to weapons Data disseminated to theater
Advanced Missile Tracking	Flight experiment to collect OPIR tracking data of interest from LEO	 Periodic regional access Detection of HGVs HBTSS flight for targeting data Communication directly with C2BMC 	 Persistent regional access Detection of HGVs & other advanced missile threats Targeting quality data Communication directly with C2BMC
Custody	 Identify / assess candidate multi-phenomenology fusion algorithms for on-orbit use Test TO on-orbit processors via commercial data / algorithms 	 Demonstrate multi-phenomenology, ground-based sensor fusion Goal to demonstrate on-orbit fusion capability assisted by ground processing 	 Periodic regional access Multiple sensing types using mission partner contributions Demonstrate multi-phenomenology, on-orbit sensor fusion
Navigation	Demonstrate dissemination of PNT information over TDL	Periodic regional access of alternate PNT	Persistent regional access of alternate PNT

Currently in detailed Warfighter discussions regarding Tranche 1 needs

SPIRAL PRODUCT ROADMAP

Tranche 0 (FY22) – Warfighter immersion

The minimum viable product is demonstrating the feasibility of the proliferated architecture in cost, schedule, and scalability towards necessary performance for beyond line of sight (BLOS) firing solutions and advanced missile detection and tracking.

Tranche 1 (FY24) – *Initial warfighting capability*

Regional persistence for tactical datalinks, advanced missile detection, and BLOS targeting.

Tranche 2 (FY26) - Global persistence for all in Tranche 1

This will incorporate lessons learned from operating gen 0 for at least two years.

Tranche 3 (FY28) – Advanced improvements over Tranche 2

This includes better sensitivity for missile tracking, better targeting capabilities for BLOS, additional PNT capabilities in GPS-denied environments, advanced tactical data links for weapons and platforms, and built-in resilience to enable broad spectrum threat mitigation.

Tranche 4 (FY30) – Continual advances to the layers TBD.

SDA WARFIGHTER COUNCIL (WFC)

- The Warfighter Council is chaired by the Deputy Director, SDA:
 - Membership include individuals at the SES or 1-star level from each of the member organizations.
 - The council meets twice each year
- The Warfighter Council employs action officer working groups focused on the SDA Tranches:
 - Each active organization in the Warfighter Council membership is offered attendance at the working groups
 - Each working groups meets monthly, which creating a consistent battle rhythm for warfighter engagement

WFC MEMBERSHIP

- Joint Chiefs of Staff
- U.S. Africa Command
- U.S. Central Command
- U.S. Cyber Command
- U.S. European Command
- U.S. Indo-Pacific Command
- U.S. Northern Command
- U.S. Southern Command
- U.S. Space Command
- U.S. Special Operations Command
- U.S. Strategic Command
- U.S. Transportation
 Command
- U.S. Army (G3 and/or G8 staff)
- U.S. Navy (N3 and/or N8 staff)
- U.S. Air Force (A3 and/or A8)

- U.S. Marine Corps (Combat Development and Integration (CD&I))
- U.S. Space Force (J8 staff and/or Space and Missile Center)
- National Reconnaissance
 Office
- National Geospatial-Intelligence Agency
- National Security Agency
- Missile Defense Agency
- Defense Advanced
 Research Projects Agency
- Defense Intelligence
 Agency
- Office of Under Secretary of Defense for Intelligence

DISTRIBUTED FOR EFFICIENCY – SDA LOCATIONS

ACQUIRING CAPABILITIES AT SPEED

SDA IS ACCELERATING DEFENSE SPACE CAPABILITY DEVELOPMENT BY NAVIGATING ACQUISITION PROCESSES AT SPEED

SDA'S TRANCHE O TEAM

ACCOMPLISHMENTS

- ✓ Delivered 2 satellites for launch 9 months after receiving funding
- ✓ Awarded contracts for all four Tranche 0 NDSA industry-developed segments Transport, Tracking, Mission Systems Engineering & Integration, and Launch Services
 - Tranche 0 will place 30 space vehicles on orbit and demonstrate initial data transfer and missile tracking capabilities in LEO
- "Space Development Agency praised as change agent in Pentagon procurement"
 - <u>https://spacenews.us10.list-</u> <u>manage.com/track/click?u=75806695e6f086874391c9624&id=c094eb7e82&e=a3e38d0320</u>

DELIVERING CAPABILITY AT AN AFFORDABLE COST

\$100s of Millions

\$14.1 M

<\$14 M

Historical costs per satellite of traditional space development programs

\$15-25M

Price per Transport satellite published in SDA's original budget

Average price per satellite for SDA's 20-satellite Tranche 0 Transport Layer *including non-recurring engineering costs*

Average price per satellite quoted in RFI responses for Tranche 1

SDA IS ON PACE TO DELIVER INITIAL SPACE TRANSPORT CAPABILITIES ON THE AGENCY'S ORIGINAL ADVERTISED SCHEDULE AT A PRICE POINT ONCE DEEMED UNACHIEVABLE

MARCHING TOWARD PRODUCT RELEASE

	Program / Demo Name	Principal USG Organization	Principal Vendor(s)	2019	2020	2021	2022	2023	2024	2025
Experiments and Prototypes	Blackjack Demos	DARPA	SEAKR, SA Photonics, Lockheed Martin			2x 🐗		8x		
	PIRPL	SDA	Northrop Grumman		1	Lx 🛹				
	Mandrake II	SDA / DARPA / AFRL	Astro Digital, SA Photonics		2	x with				
	LINCS	SDA	General Atomics		2>					
	XVI	SDA / AFRL	Viasat		- 8	1x 🛹				
Ground Support Capabilities	CASINO/MDP	SMC	MSFT, Ball Aerospace							
	HBTSS/Ground	MDA	In Source Selection	1			,			
Trancho ()	Transport Layer	SDA	Lockheed Martin, York Space Systems			2	20x 🦛	apres a		
Limited Operational	Tracking Layer	SDA	SpaceX, L3Harris			8x WF	0V 🛹	apres 1		
Capability / Architecture Demonstration		MDA	L3Harris, Northrop		2	x MFOV ((HBTSS)	Contraction of the second		
	MSE&I	SDA	Perspecta		<					
	Launch	SDA	SpaceX	1		-103				
1	E States		Architecture Adoption			~>~				
Tranche 1 Initial Capabilities / Regional Persistence	Transport Layer	SDA	TBD					100-15	50x 🛹	
	Tracking Layer	SDA	TBD		2			~/	42x 🐗	
CASINO = Commercially Au	gmented Space Inter Netwo	ork Operations MSE	&I = Mission Systems Enginee	ring & Inte	gration			Sn	ace Segm	ent

LINCS = Laser Interconnect and Networking Communication System MDP = Mission Data Processor

MFOV = Medium Field of View

Distribution A: Approved for public release. Distribution unlimited.

PIRPL = Prototype Infrared Payload

WFOV = Wide Field of View

WHAT'S NEXT?

• Planning to launch SDA's first satellites, as part of our demonstration efforts on the way to Tranche O.

• Finalizing all segment designs for an integrated and interoperable Tranche 0 system.

• Defining Tranche 1 minimum viable product and releasing one or more relevant requests for proposal (RFP).

Capstone Tranche 0 Demonstration

CAPABILITY ROADMAP

SPACE DEVELOPMENT AGENCY

SEMPER CITIUS

