DoD Microelectronics Overview - on behalf of Honorable Heidi Shyu

NDIA Electronics Division Summer Meeting

Dr. Dev Shenoy, Principal Director for Microelectronics, Director, Defense Microelectronics Cross Functional Team OUSD (R&E) - Critical Technologies

Aug 30, 2022

DISTRIBUTION STATEMENT A. Approved for Public Release

Microelectronics a "must-win" technology for DoD

BUILDING RESILIENT SUPPLY CHAINS, REVITALIZING AMERICAN MANUFACTURING, AND FOSTERING BROAD-BASED GROWTH

100-Day Reviews under Executive Order 14017

June 2021 A Report by The White Hous

Including Review Department of Department of

INTERIM NATIONAL SECURITY STRATEGIC GUIDANCE

U.S. Department of Defense

Fact Sheet: 2022 National Defense Strategy

how the Department of Defense will contribute to advancing and safeguarding vital U.S. national intere - protecting the American people, expanding America's prosperity, and realizing and defending our

Defending the homeland, paced to the growing multi-domain threat posed by the PRC
 Deterring strategic attacks against the United States, Allies, and partners
 Deterring aggression, while being prepared to prevail in conflict when necessary, prioritizing the PRC challenge in the Indo-Pacific, then the Russia challenge in Imope

Russia poses acute threats, as illustrated by its brutal and unprovoked invasion of Ukraine. We will collaborate with our NATO Allies and partners to reinforce robust deterrence in the face of Russian aggression. The Department will remain capable of managing other persistent threats, including those from North

Changes in global climite and other dangerous transboundary threats, including pandemics, are transforming the context in which the Department operators. We will adapt to these challenges, which increasingly place pressure on the Joint Force and the systems that support it. Recognizing growing kinetic and non-kinetic threats to the United States' bonneland from our strategic competitors, the Department will kine necessary actions to increase resiltance — and highly a withshur and the systems that the second strate the systems that support is the system strategic competitors, the Department will kine necessary actions to increase resiltance — and highly a withshur the systems of the systems of the systems and the system and the systems and the system and the systems and the system and the systems and the systems

ment will act urgently to sustain and strengthen deterrence, with the People's Republic of ") as our most consequential strategic competitor and the pacing challenge for the Departu

4. Building a resilient Joint Force and defense ecosystem.

Korea, Iran, and violent extremist organization

ight through, and recover quickly from disruption

For the first time, the Department conducted its strategic reviews in a fully integrated way – incorporating the Nuclear Posture Review (NPR) and Missike Defance Review (MDR) in the NDS – ensuring tight indicages between our strategy and our resources. The unclassified NDS will be forthcoming. Consistent with the President's Interim National Security Strategic Guidance, the classified NDS sets out

Today, the Department of Defense transmitted to Congress the classified 2022 National Def

MARCH 202

"Semiconductors are essential to national security. . . . They are fundamental to the operation of virtually every military system, including communications and navigations systems and complex weapons systems such as those found in the F-35 Joint Strike Fighter."

"Semiconductors are key to the "must-win" technologies of the future, including artificial intelligence and 5G, which will be essential to achieving the goal of a "dynamic, inclusive and innovative national economy" identified as a critical American advantage in the March 2021 Interim National Security Strategic Guidance.

> "Building enduring advantages . . . getting the technology we need more quickly, and making investments in the extraordinary people of the Department, who remain our most valuable resource."

DoD Microelectronics Vision

Vision Statement:

Guaranteed, long-term Access to Measurably Secure Microelectronics

enabling Overmatch Performance

and increasing Military Operational Availability and Warfighter Combat Readiness

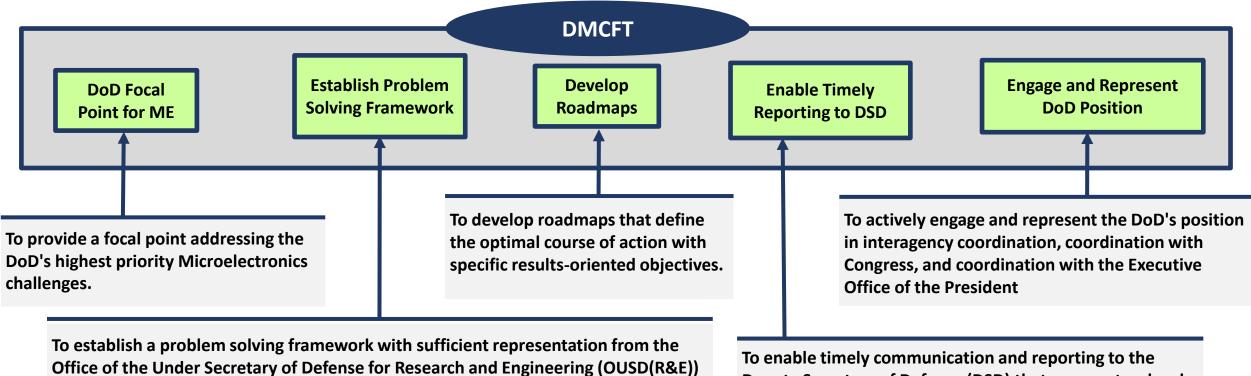
Ensure timely access to measurably secure and affordable ME technology

Motivate programs and their primes to modernize and exploit the most capable ME

Leverage tools, policies and enforcement to reduce or eliminate costly sustainment issues

Centralize knowledge in a DoD "front door" organization to augment decentralized execution

Increase ME discovery and innovation, and accelerate transition into DoD systems

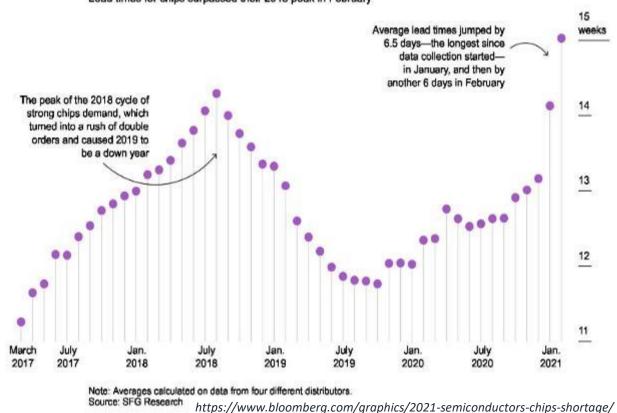

Contribute to and influence interagency and national efforts to grow ME capabilities to meet national security needs

Cultivate a right-sized workforce with the right skills at the right place and the right time

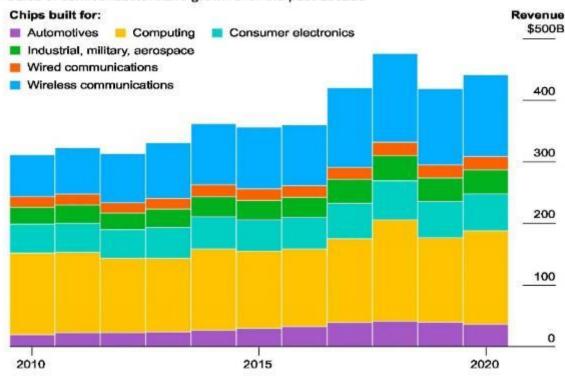
Defense Microelectronics Cross Functional Team (DMCFT) Objectives

Office of the Under Secretary of Defense for Research and Engineering (OUSD(R&E) and the OUSD for Acquisition and Sustainment (OUSD((A&S)), the Military Departments, and other DoD Components to identify and recommend solutions concerning defense microelectronics.

To enable timely communication and reporting to the Deputy Secretary of Defense (DSD) that ensures top-level decisions are made internally before being communicated outside the Pentagon.


Establish a comprehensive defense microelectronics strategy to include:

- Holistic DoD approach that strengthens the domestic microelectronics industrial base
- Detailed plan to develop and transition microelectronics technology into DoD systems.


Impact of COVID on Global Supply

Patiently Waiting Lead times for chips surpassed their 2018 peak in February

Need for Chips

Sales of semiconductor have grown over the past decade

Note: Data does not include foundry-only businesses such as TSMC or Global foundries. Source: IDC

- In February [2021], lead times—the duration between when an order for a chip is placed and when it actually gets filled—stretched to 15 weeks on average for the first time since data collection started in 2017
- The crunch has sideswiped the General Motors, and Volkswagens of the world and swung politicians from Washington to Beijing into crisis control

DoD Faces Foundry Consolidation Challenges

90-nm Fully depleted silicon on
insulator (FDSOI) @ SkyWater
Initial access rolled out in 2021

Dongbu H. Freescale						
Fujitsu	Freescale					
Grace	Fujitsu					
Panasonic	Infineon					
Renesas	Panasonic					clining
Seiko Epson	Renesas				Manu	facturing
SK Hynix	Seiko Epson	Huali			Sc	ources
SMIC	SK Hynix	Fujitsu				
Sony	SMIC	Panasonic				
ST Micro	Sony	Renesas	Panasonic			
TI	ST Micro	SK Hynix	SK Hynix			
Toshiba	TI	SMIC	SMIC			
HHNEC	Toshiba	ST Micro	ST Micro			
MIT/LL	HHNEC	Toshiba	Toshiba		1	
Skywater	UMC	HHNEC	HHNEC	SMIC		
TowerJazz	TowerJazz	UMC	UMC	UMC		_
Intel	Intel	Intel	Intel	Intel	Intel	
Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Intel
TSMC	TSMC	TSMC	TSMC	TSMC	TSMC	Samsung
GF	GF	GF	GF	GF	GF	TSMC
90 nm	65 / 55 nm	45 / 40 nm	32 / 28 nm	22 / 20 nm	16 / 14 nm	≤ 10 nm

Derived from a chart originally from the General Services Administration (GSA)

DoD requires a multi-vendor, assured, pipeline of critical microelectronics across several generations of technologies in a diminishing global supply chain

Microelectronics Supply Chain Visibility

Securing Defense-Critical Supply Chains

An action plan developed in response to President Biden's Executive Order 14017

February 2022

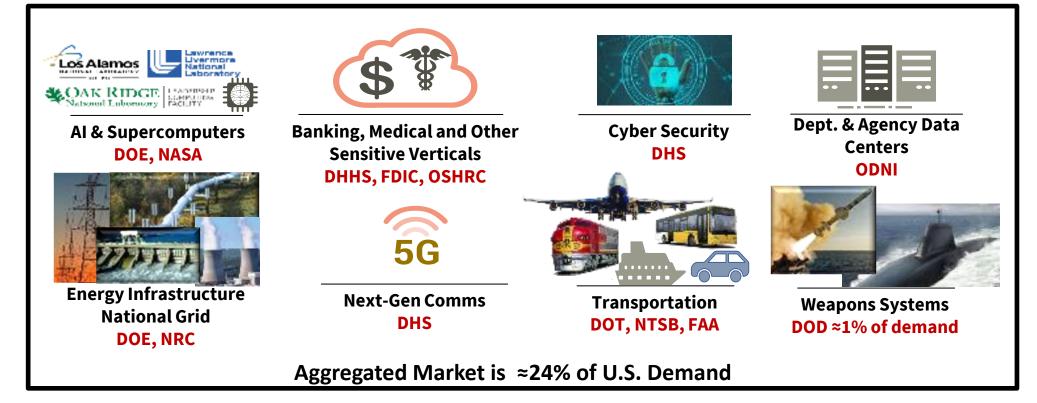
"Supply Chain Visibility: DoD is still building visibility into the sub-tiers of the microelectronics supply chain; until there is greater visibility, it will be difficult to identify certain supply chain threats, vulnerabilities, and risks. Visibility is further eroded by system-level (next-level assembly comprised of multiple microelectronics components) manufacturers who simply seek the lowest cost producers and are source agnostic."

Automated Microelectronics Analysis and Reporting Optimization (AMARO)

Supply Chain Challenges

- Existing tools unable to provide aggregate threat and vulnerability data on a collection of microelectronics parts (BOMs)
- Existing tools unable to determine which third-party sites specific semiconductor devices move through

AMARO Tool


- Can map microelectronics lifecycle across the entirety of its supply chain, and identify possible threats and vulnerabilities
 - Can assess across a Bill of Materials (BOM)
- Tool designed to address needs of DoD Programs, JFAC, CI Community, and Senior Decision Makers
- Can aid in high-level, strategic questions
 - "Impact to DoD if Country X invades Country Y?"
 - Natural disaster "what-if" scenarios
 - Support to CFIUS cases

Market for Secure Microelectronics: National & Economic Infrastructure

Access to Measurably Secure ME will serve this critical infrastructure market

- Domestically designed, manufactured, packaged and tested parts that meet U.S. security and safety standards
- Ensure access to a forecasted aggregated demand of SOTP and Legacy Technologies (designs remain robust over a 10+ year PoP)

A "whole of nation" approach to access Measurably Secure ME

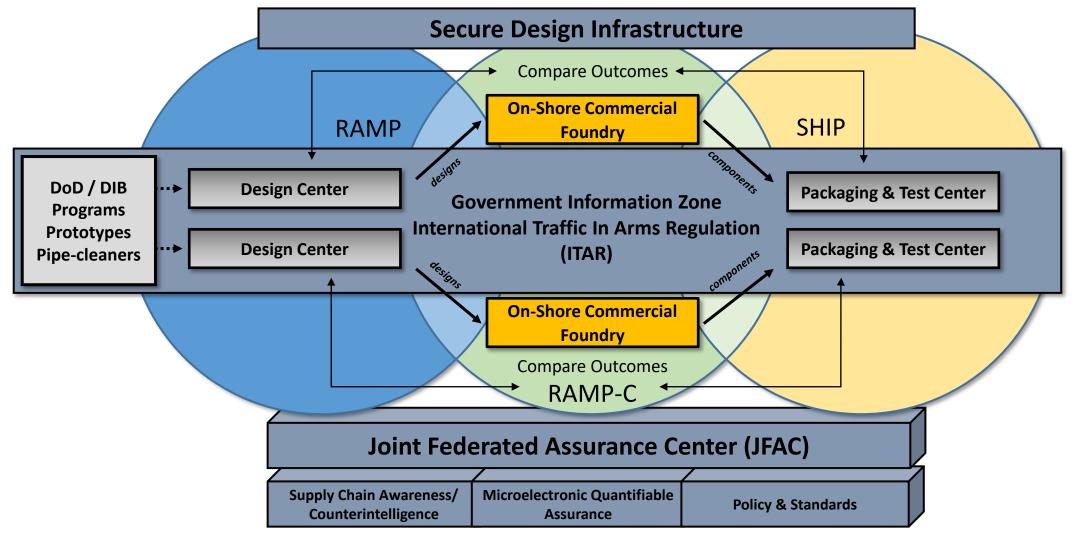
Implementing Proven and Evolving Approaches to Address Threats and Vulnerabilities in the Microelectronics Lifecycle

Microelectronics Lifecycle Program Development PPP/CPI Design Verify Mask Fabrication Package & Test Verify & Validate Config./Prog. SW Integrate &

Test

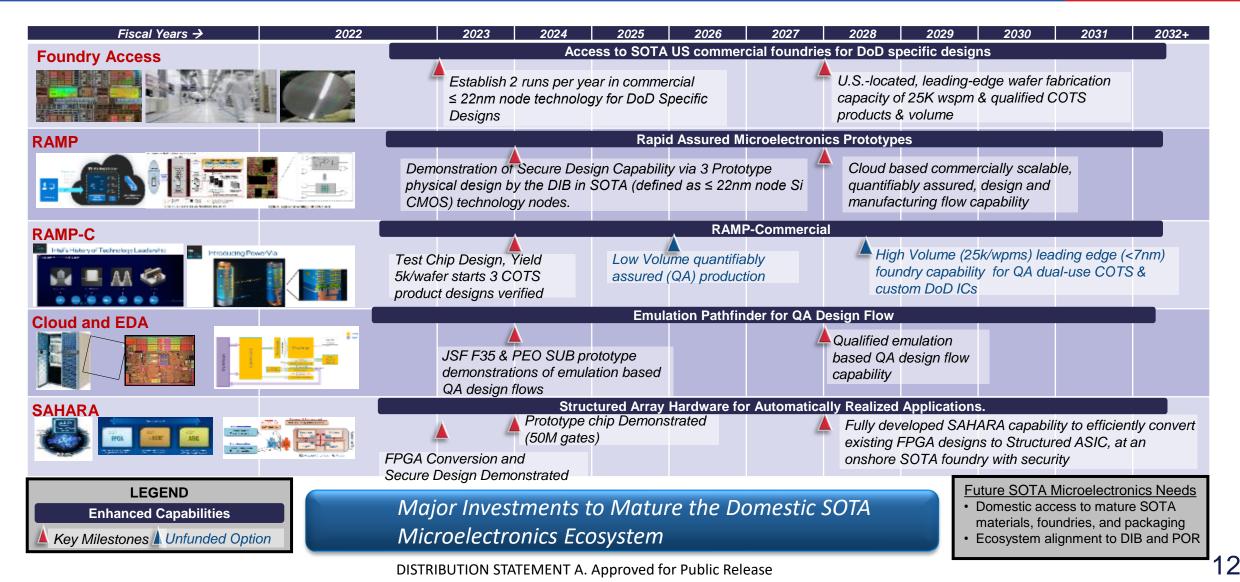
Operation & Maint.

DoD Microelectronics Assurance Framework (MAF)

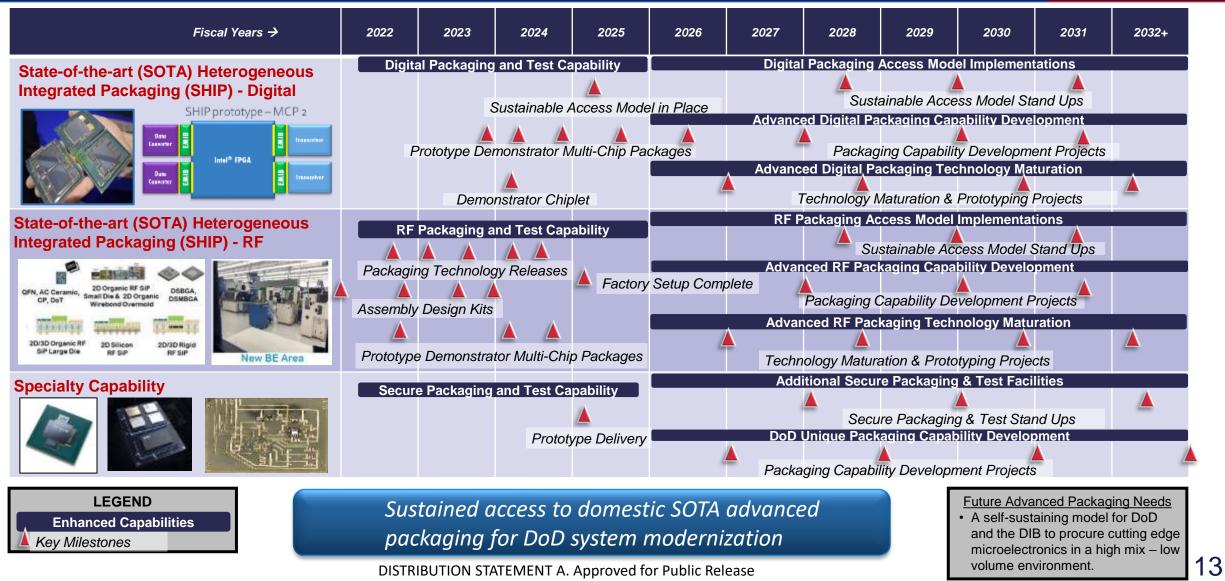

 Approach under development utilizes risk-based decision making to ensure systems can manage evolving and insider threats present in today's global microelectronics ecosystem

"Trusted Supplier" Approach

 Continues to secure critical technologies through accreditation based on commercial standards

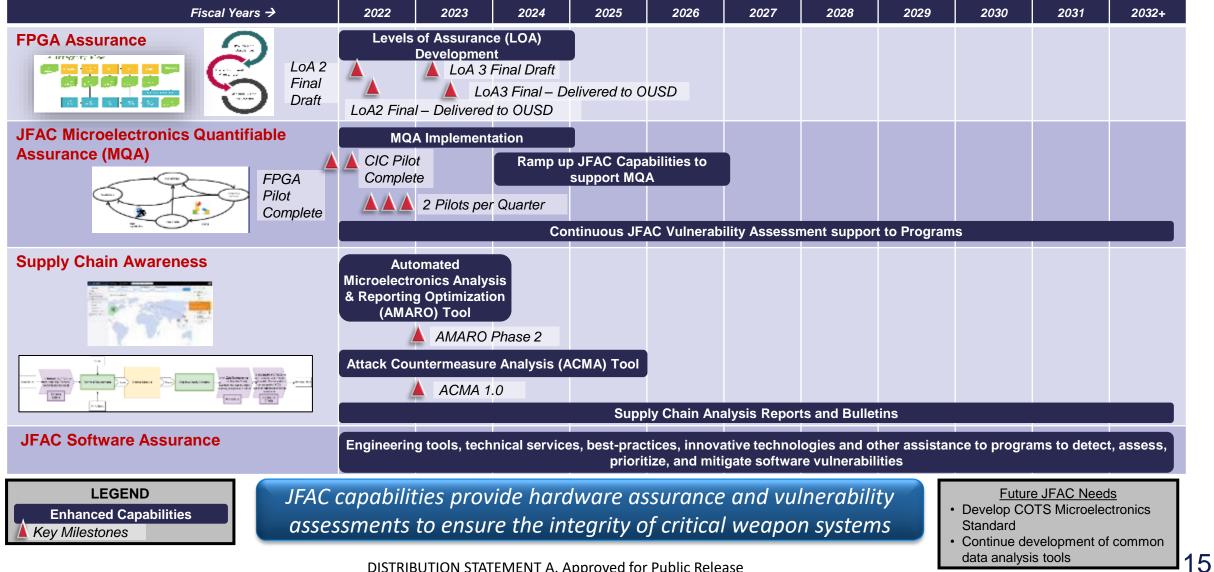

T&AM Program Enabling Access to State of the Art (SOTA)

DISTRIBUTION STATEMENT A. Approved for Public Release



Access to State of the Art (SOTA) Roadmap

Access to Advanced Packaging Roadmap



Radiation Hardened Microelectronics (RHM) Roadmap

Fiscal Years >	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032+
RH by Process	SkyWat Demonstra	er 90-nm F te design a	m SRH, Title DSOI w/ Cu nd process n tested chi	BEOL)	Fully qualified mission funct					ling new	
RH by Design		2-nm & Inte te design a pability with	and h	Two new enabling c capability	ext Gen 5/7-nr sources of SF onboard proce with 100x cap ent, TRL-8	RHM essing		Demo 5/7nn	1		
RH Stand Alone Components	SRH Proces Design Com	sor FL plete SI SI	Illy qualified RH Process RH Memory	Componen or (100x pei Products (2		Fully qua multiple (olatile) to 1	lified SRH F program nee	PGA Recogn d, TRL-8	iized as key,		
RH Lab Modernization				n Testing In Newly de strategic d	frastructure (veloped equip community to signal at the n	NSWC Cran ment/facility address futu	to provide c ire strategic	apacity to the	þ		
LEGEND Enhanced Capabilities Sustainment Activity Key Milestones					dernize d oelectroi		ain		 Next Ge greater Operation 	I Microelectro eneration RHN performance onal Test scale and mor	1 with

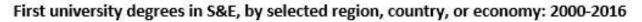
Joint Federated Assurance Center (JFAC) Roadmap

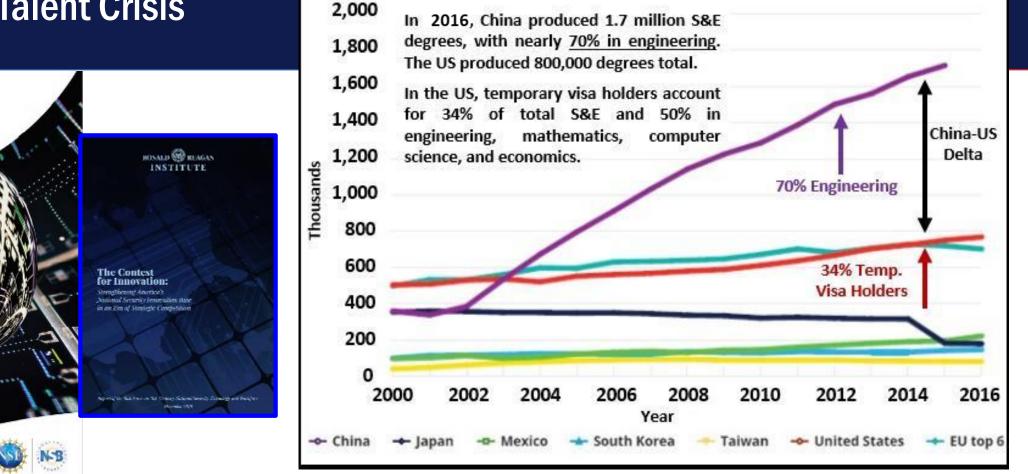
DISTRIBUTION STATEMENT A. Approved for Public Release

Radio Frequency & Optoelectronics (RF/OE) Roadmap

Fiscal Years ->	2022 2023 2024	2025 2026	2027 20	28 2029	2030	2031	2032+	
Material Sources	MRL-5 production qualification of new N-Polar GaN material sources with increased capacity and quality	RF Gallium MRL-6 production dem Polar GaN material for foundries MRL-4 R&D demos of	DIB enab	-8 pilot demos of ling max power (and efficiency	in mmWave		
GaN Foundry Maturation	MRL-4 R&D demos <150nm GaN nodes Advanced Interconnect Study for mmWave 	RF GaN F MRL-6 production dem <150nm GaN nodesAdvanced InterconnQuantifiable Assuration	ects	n IRL-8 pilot demo GaN foundries av Ivanced packagi	ailable to DIB/	for		
GaN Device Demonstration		RF mmWave D	Device Demonstrat	ions				
	40nm, 140nm, 150nm RF GaN Device Demos at MRL-4/5 lines	A 40nm, 90nm, 150nm RF GaN Device Demo and IP Capture at MRL-6 foundries	capture a	0nm, 150nm RF at MRL-8 foundr ectronic warfare	ies enabling n	ext generatio	on	
Silicon Photonics (SiPh)		SiPh Four	ndry Maturation					
Foundry Maturation	Demonstrate early access to SOTA SiPh nodes and develop maturation plan		Mat	emonstrate open mature SOT/ ure SOTA SiPh t generation rada	A SiPh nodes foundry capab	ility and cap		
SiPh Device Demonstration		SiPh Devi	ce Demonstration	9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	Demonstrate open access designs at AIM and GF 45SPCLO							
LEGEND Enhanced Capabilities	Major Investments to M Microelec		Future RF/OE • Domestic acc RF/OE mater packaging • Ecosystem a	ess to matur ials, foundrie	e SOTA s, and			

DISTRIBUTION STATEMENT A. Approved for Public Release

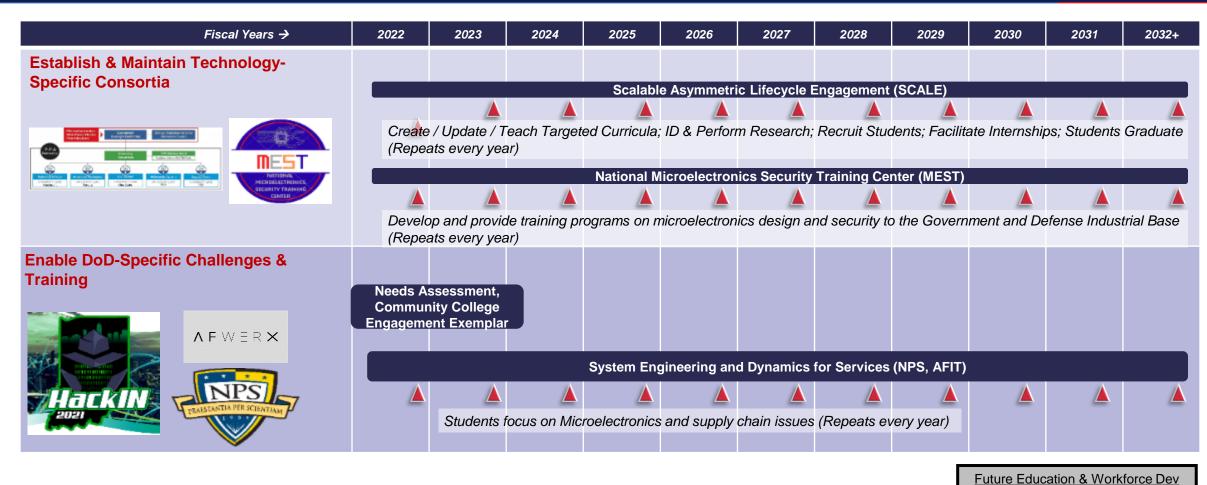



2020 NATIONAL SCIENCE & GARD SCIENCE & ENGINEERING INDICATORS

& Engineering

The State of U.S. Science

STEM Talent Crisis



As much as emerging technologies will define future conflict, *the war for talent will likely play the central role* in the outcome of long-term technological competition.

The National Security Innovation Base (NSIB) struggles to attract, recruit, and retain a workforce willing and able to tackle tough challenges and find innovative solutions. Universities are confronting a dearth in American talent generation and retention. Much of that shortfall is filled with foreign students, a large share of them from China.

Education and Workforce Development Roadmap

Attract, Develop, and Maintain a Ready Workforce

DISTRIBUTION STATEMENT A. Approved for Public Release

Needs

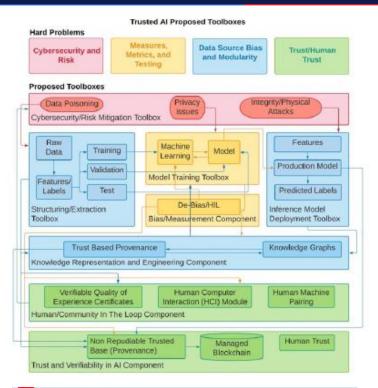
Awareness / Integration with AFRL,

AFWERX, other DoD capabilities

Additional funding/capacity

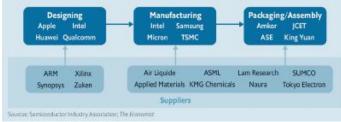
Ways to leverage veterans

Scalable Asymmetric Lifecycle Engagement (SCALE) TOPIC AREAS with HWA Components


Artificial Intelligence (AI)

- Artificial intelligence (AI) provides a tremendous amount of sophisticated information analysis and decision making capabilities
- AI has even been characterized as a potential third offset for DOD, if it can be trusted
- Trusted AI requires addressing hard challenges such as verifiability, bias, fairness, explainability, and human interaction and feedback

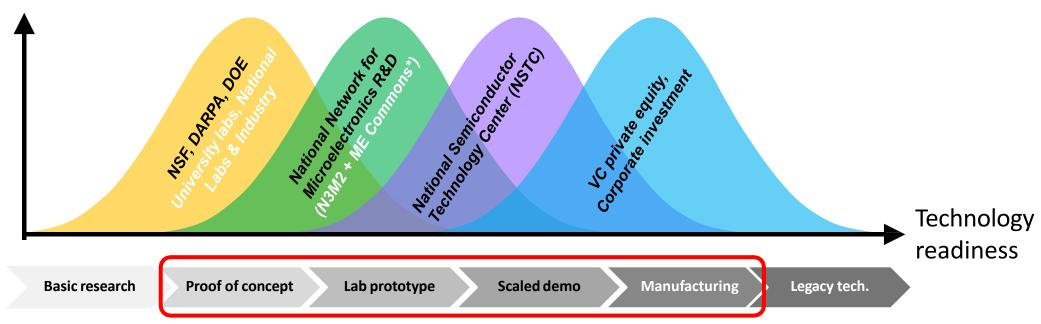
Supply Chain Awareness


- With the increasingly central role of electronic hardware in a broad range of defense applications, securing supplies of electronics is more important than ever before.
- At the same time, exponential growth and complexity in semiconductor manufacturing creates potential supply chain disruption at all levels
- Challenges include understanding potential risks of IP security, measuring and detecting potential tampering with manufacturing and packaging, as well as improving supply chain resilience

Other Scale Topic Areas Include: Radiation Hardened Microelectronics, SoCs and Advanced Packaging/Heterogeneous Integration

Integrated, circuitous

Simplified illustration of the semiconductor industry, 2018


National Network for Microelectronics R&D: Ideation to Commercialization

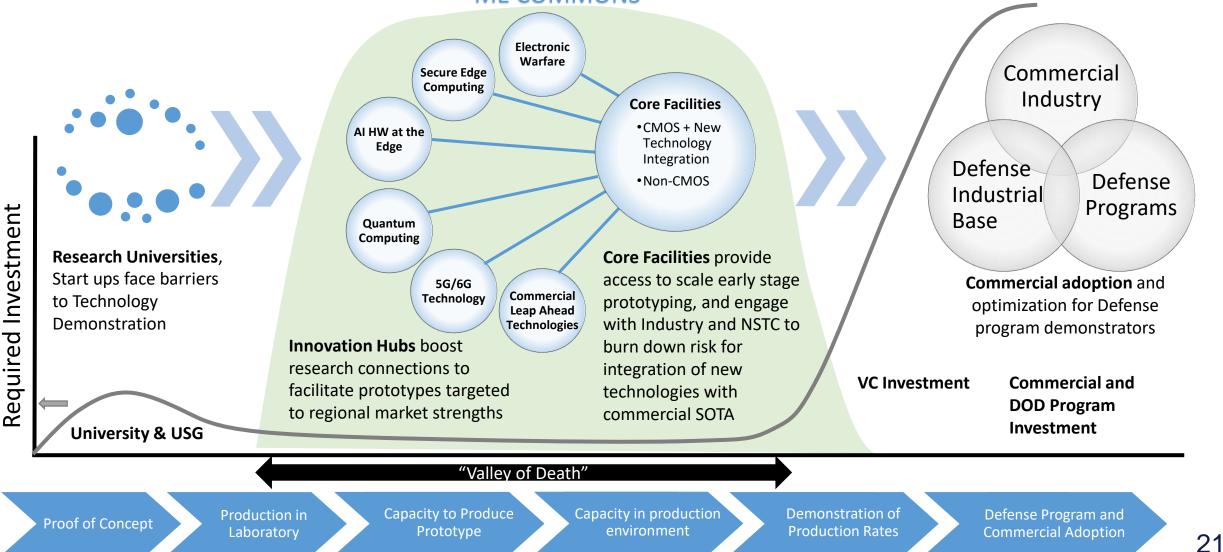
Mission

- Cost-effective exploration of chip-scale and package-scale systems in domestic facilities
- Accelerate transition of new technologies to domestic microelectronics manufacturers

Available funding;

Available capabilities

Adapted from : White paper on "Microelectronics Commons," V. Coleman, Z. Holman, T.-J. King Liu, K. Squires, H.-S. P. Wong (2020)


DISTRIBUTION STATEMENT A. Approved for Public Release

UNCLASSIFIED

Microelectronics Commons Addresses the Valley of Death

Salient Points

- DoD faces many challenges for secure, low cost access to extant systems, state of practice, and leading edge
 - Aggregation of microelectronics demand across critical sectors provides an opportunity for DoD and partners
- DoD has developed roadmaps for secure access to critical technologies including:
 - SOTA microelectronics
 - Advanced packaging and testing
 - Joint Federated Assurance Center (JFAC) Roadmap
 - Educational and Workforce Development Roadmaps
- DoD and the interagency are planning for CHIPS funding related investments