Outgunning the A-10 with an Apache or FARA: New Flight-Safe Saboted Ammunition for Attack Rotorcraft

Outline:

KANSAS

- Motivation
- ii. The Close Air Support History, Army Challenges
- iii. Struggles & Breakthrough: Flight Safe Sabots
- BASS & MASS Round Design Philosophies
- Aerodynamics, Aeromechanics, FEM, Bench Testing
- Range Shots, Performance, Trades
- Intellectual Property Filings, Claims & Status
- viii. Opportunities

Adaptive Aerostructures Laboratory

· Specialize in "Prime Mover" Military Technologies:

-Ultra-high performance drones

- -Invisible drones
- -Hovering missiles
- -Guided ammunition 4 155mm
- -Hypersonic ammunition
- -Acoustic Vector Sensors
- Advanced Commercial Technologies:
 - -Adaptive Aerocompliant Surfaces
 - -Commercial Drones
 - -Toys
- IP Protection & Litigation

Adaptive Aerostructures Laboratory

· Specialize in "Prime Mover" Military Technologies:

-Ultra-high performance drones

- -Invisible drones
- -Hovering missiles
- -Guided ammunition 4 155mm
- -Hypersonic ammunition
- -Acoustic Vector Sensors
- Advanced Commercial Technologies:
 - -Adaptive Aerocompliant Surfaces
 - -Commercial Drones
 - -Toys
- IP Protection & Litigation

KU Aerospace Engineering Department

Adaptive Aerostructures Laboratory

· Specialize in "Prime Mover" Military Technologies:

-Ultra-high performance drones

- -Invisible drones
- -Hovering missiles
- -Guided ammunition 4 155mm
- -Hypersonic ammunition
- -Acoustic Vector Sensors
- Advanced Commercial Technologies:
 - -Adaptive Aerocompliant Surfaces
 - -Commercial Drones
 - -Toys
- IP Protection & Litigation

KU Aerospace Engineering Department

Adaptive Aerostructures Laboratory

· Specialize in "Prime Mover" Military Technologies:

-Ultra-high performance drones

- -Invisible drones
- -Hovering missiles
- -Guided ammunition 4 155mm
- -Hypersonic ammunition
- -Acoustic Vector Sensors
- Advanced Commercial Technologies:
 - -Adaptive Aerocompliant Surfaces
 - -Commercial Drones
 - -Toys
- IP Protection & Litigation

KU Aerospace Engineering Department

Adaptive Aerostructures Laboratory

· Specialize in "Prime Mover" Military Technologies:

-Ultra-high performance drones

- -Invisible drones
- -Hovering missiles
- -Guided ammunition 4 155mm
- -Hypersonic ammunition
- -Acoustic Vector Sensors
- Advanced Commercial Technologies:
 - -Adaptive Aerocompliant Surfaces
 - -Commercial Drones
 - -Toys
- IP Protection & Litigation

KU KANSAS

1.Motivation: Why use flight-safe discarding sabot ammunition?

Endows AH-64 & FARA with better than A-10 gunnery firepower

• Increased range, KE, lethality, Pk, flat fire

Reduced TOF, CEP, system weight, volume, airframe MGWTO & LCC

Enables both unguided and guided variants through hypersonic speeds

KU THE UNIVERSITY OF KANSAS

2. Saboted Round & Aerial Gunnery History (condensed)

1st Archival Document Describing a Sabot

1326 Treatise of Walter de Milemete

W. de Milemete, "The Treatise of Walter de Milemete: de Nobilitatibus, Sapientiis, et Prudentilis Regum," Christ Church, Oxford; digital ID: 3590ddc7-1ae2-4b23b576-ec716fb24d01, 1326-1327. Image Source:

https://catalog.hathitrust.org/Record/002098083

2. Saboted Round & Aerial Gunnery History (condensed)

• Increasing Chamber Pressures & Functions of Early Sabots – 1850's

2. Saboted Round & Aerial Gunnery History (condensed)

PROJECTIONS FOR SMOOTH-BORN CARROW.

695 Years of Sabots... US Civil War – Modern Sabots

Not one suitable for aerial gunnery

331158 1/1975 Fed. Rep. of Germany

KU THE UNIVERSITY OF KANSAS

2. Saboted Round & Aerial Gunnery History (condensed)

Modern Armor-Piercing Discarding Sabot Munition

KU KANSAS

2. Aerial Gunnery History (condensed) 1st Gun Duel

The drawing above, from a 1918 "Manual of the Automatic Pistol Caliber .45 Model of 1911," illustrates components of the original military .45 ACP loading—a 230-gr. bullet traveling at 855 f.p.s.

Model 1906 .45 Revolver Ball cartridge

image Source https://en.wikipedia.org/wiki/lvff9ff_pistol

Unlimited Distribution

2. Aerial Gunnery History (condensed)

1st Air-to-Ground Strafing:

US Customs House, Naco, Arizona

Unlimited Distribution

2. Aerial Gunnery History (condensed)

1st Air-to-Ground Strafing:

US Customs House, Naco, Arizona

"Customs people are always irritating." —Dean Ivan Lamb

J THE UNIVERSITY OF KANSAS

2. Aerial Gunnery History (condensed)

20mm Becker Autocannon in the Front of a Gotha G.1

KANSAS

2. Aerial Gunnery History (condensed)

JU-87G-1 with 37mm Cannon (1937 – 1945)

KU KANSAS

2. Aerial Gunnery History (condensed)

A Unlimited Distribution

Vistribution A U

Unlimited Distribut

3. Struggles & Breakthrough

Post-Key West Drive for Army CAS: US Army's 1st Gunship: YAH-32 Hornet

KU THE UNIVERSITY OF KANSAS

3. Struggles & Breakthrough

Post-Key West Drive for Army CAS: OV-1... Symptom of the Unmet Need

3. Struggles & Breakthrough

Post-Key West Drive for Army CAS: AH-1 Cobra

3. Struggles & Breakthrough

Conventional Discarding Sabot Design Philosophy and Aeromechanics

ion A Unlimited Distribu

3. Struggles & Breakthrough

- Tremendous Activitiy 1952 1998
- · Sabot Diverters
- · Hybrid Rocket-Assisted Projectiles
- Drag Fumers
- Rotating Bands
- Tubular Projectiles
- Disentegrating Sabots
- · Meyer & Burnette Sabots

Aeroballistic Research Facility

100

80

60

3. Struggles & Breakthrough

T = 4.0s

T=5.0s

Struggles with Aircraft & Sabots

280

20

0

-20

The Great Show Stopper for conventional sabots:

Flight Safety

40

20

KU THE UNIVERSITY OF KANSAS

3. Struggles & Breakthrough

- USAF developed 1st guided aerial gunnery round prototypes 1995 1998
 - · Barrel-Launched Adaptive Munition (BLAM) Program 1995 1998

3. Struggles & Breakthrough

- USAF developed 1st guided aerial gunnery round prototypes 1995 1998
 - · Barrel-Launched Adaptive Munition (BLAM) Program 1995 1998

1998: USAF ceases all advanced/guided aerial gunnery & saboted ammo. RDT&E

The AFRL does not have an S&T portfolio in ammunition.
-David Lambert AFRL Munitions Directorate Chief Scientist, (via J. Ellison) 2021

4 Unlimited Distributi

3. Breakthrough

Ms. (now Dr.) Lauren Schumacher

2016 Co-Inventor
Ballistic Aeromechanically Stable Sabot (BASS) Ammunition
Maneuvering Aeromechanically Stable Sabot (MASS) Ammunition

Senior Systems Engineer, Raytheon

3. Breakthrough:

BASS Rounds: Design the Sabot to clear the launching aircraft

THE UNIVERSITY OF KANSAS

4. MASS & BASS Rounds

What is claimed is:

1. An aeromechanically stable sabot...

54 major families, >1,000 species covered in expansive patent filings

KANSAS

4. MASS & BASS Rounds

Today's Aerial Gunnery Round

BASS 2081 Flechette/penetrator

KU KANSAS

5. Modeling & Testing

- Conceived 2016 & reduced to practice
- Modeled in CFD, FEM, DATCOM & PRODAS
- · Tested on Shock Table, Wind Tunnel, Range
- · >100 rounds fired, currently @ TRL-6

5. Modeling & Testing

Top-Level Drag and Stability Characteristics

Flechette

X-Sectional Area of PGU-14 >> Flechette

Supersonic Drag ~ proportional to X-Sectional Area, Drag_{PGU14}>> D_{Flechette}

PGU-xx

KU KANSAS

5. Modeling & Testing

Projectile Aeromechanics & CEP Fundamentals

Flechette

Instantaneous introduction of lateral gust

PGU-xx

KANSAS KANSAS

5. Modeling & Testing

Projectile Aeromechanics & CEP Fundamentals

PGU-v

KU KANSAS

5. Modeling & Testing

Projectile Aeromechanics & CEP Fundamentals

KANSAS

5. Modeling & Testing

Projectile Aeromechanics & CEP Fundamentals

Projectile Aeromechanics & CEP Fundamentals

A Unlimited Distributi

5. Modeling & Testing

Projectile Aeromechanics & CEP Fundamentals

A Unlimited Distribution

6. BASS Performance

Flight Safety/Airframe Strike Check

AH-64 & A-10 Sabot separation Modeling (99% atmospherics)

Source: Schumacher, L. N., "BASS Medium Caliber System Modeling: Proof-of-Concept and the Future of Aerial Gunnery with Advanced Munitions," Ph.D. Dissertation Defense, 29 June 2020, The University of Kansas Aerospace Engineering Department, Lawrence, Kansas.

KANSAS

6. BASS Performance

Flight Safety/Airframe Strike Check

AH-64 & A-10 Sabot separation Modeling (99% atmospherics)

Source: Schumacher, L. N., "BASS Medium Caliber System Modeling: Proof-of-Concept and the Future of Aerial Gunnery with Advanced Munitions," Ph.D. Dissertation Defense, 29 June 2020, The University of Kansas Aerospace Engineering Department, Lawrence, Kansas.

6. BASS Performance

Flight Safety/Airframe Strike Check

AH-64 & A-10 Sabot separation Modeling (99% atmospherics)

Source: Schumacher, L. N., "BASS Medium Caliber System Modeling: Proof-of-Concept and the Future of Aerial Gunnery with Advanced Munitions," Ph.D. Dissertation Defense, 29 June 2020, The University of Kansas Aerospace Engineering Department, Lawrence, Kansas.

6. BASS Performance

Flight Safety/Airframe Strike Check

AH-64 & A-10 Sabot separation Modeling (99% atmospherics)

Source: Schumacher, L. N., "BASS Medium Caliber System Modeling: Proof-of-Concept and the Future of Aerial Gunnery with Advanced Munitions," Ph.D. Dissertation Defense, 29 June 2020, The University of Kansas Aerospace Engineering Department, Lawrence, Kansas.

6. BASS Performance

Flight Safety/Airframe Strike Check

AH-64 & A-10 Sabot separation Modeling (99% atmospherics)

Source: Schumacher, L. N., "BASS Medium Caliber System Modeling: Proof-of-Concept and the Future of Aerial Gunnery with Advanced Munitions," Ph.D. Dissertation Defense, 29 June 2020, The University of Kansas Aerospace Engineering Department, Lawrence, Kansas.

6. BASS Performance

Relative Ballistic Coefficients

6. BASS Performance

Relative Ballistic Coefficients

6. BASS Performance

Relative Ballistic Coefficients

45 cal. 1st Aerial Combat 1913 20mm USMC/M53/56 Aerial 20mm USAF/PGU-28 Gunnery 25mm USAF/PGU-47 **Ammunition** 30mm Army AH-64 M789 **CIWS** Best Army & Navy Mid-Caliber Best Army High-Caliber M1A1

Unlimited Distribut

6. BASS Performance

Relative Ballistic Coefficients

6. BASS Performance

KINETIC ENERGY

6. BASS Performance

Relative Weapon Kinetic Energy from USA/USMC Aircraft

Unlimited Distribution

6. BASS Performance

Relative Weapon Kinetic Energy from USA/USMC Aircraft

6. BASS Performance

Smaller guns w/BASS rounds do the job of larger guns w/conventional rounds

KANSAS

6. BASS Performance

Enabling Technology for Light Attack, Rotorcraft & UAV Gunnery

Smaller guns w/BASS rounds do the job of much larger guns w/conventional rounds

6. BASS Performance

Guided MASS Rounds Shrink Entire Airframes, Programs & Lift-Cycle Costs

Airframe Level Costs					
	F-35A	μF-35			
Unit Price					
(millions)	\$ 80.0M	\$ 56.5M			
Operating Cost per Flight Hour	\$ 29,600	\$ 28,400			

Parameter	F-35A	μF-35	% Change
MGTOW (lb)	70,000	57,000	-19%
Wing Area, S (ft²)	447	375	-16%
Stealth Payload Required (lb)	5,700	1,171	-79%
Stealth Targets Engaged	4	14	250%
Max Range (nmi)	1,200	1,200	0%
Max Speed, Mach	M 1.61	M 1.79	12%

7. Intellectual Property Staatus

WHAT IS CLAIMED IS:

KANSAS

- 1. AN AEROMECHANICALLY STABLE SABOT...
- 2. THE AEROMECHANICALLY STABLE SABOT OF CLAIM 1, WHEREIN THE ASSEMBLY INCLUDES AT LEAST ONE AEROMECHANICALLY STABLE SEGMENT...

Image Source: PCT/IB2020/053899

Invented 2016

Modeled 2017

Reduced to practice 2018

Pat. priority date: 4/26/2019

7. Intellectual Property Staatus

- Strong, Broad US Patents Filed 2019, 2020
- Fed. Government Granted Export License & Exported
- Patents filed in: US, Europe, Germany, Norway, Australia, UK, Netherlands, France, Belgium, Italy, Spain, Japan, Korea, Singapore

PROVISIONAL PATENT APPLICATION 62/839,551 26 APRIL 2019 PRIORITY DATE 25 FIGURES, 83 CLAIMS, 80 PAGES

PCT FILING PCT/IB2020/053899 24 APRIL 2020 > 54 FAMILIES 1000+ SPECIES: 33 FIGURES, 130 CLAIMS, 106 PAGES

8. Opportunities

Attack Rotorcraft

KU KANSAS

AH-64 (M789 30 x 113mm) AH-1 (M56 20 x 102mm) FARA

Fixed-Wing Attack Aircraft

A-10 (PGU-14 30 x 173mm)

Multi-Role Fixed-Wing Aircraft

F-15, F-16, F-18, F-22 (PGU-28 20 x 102mm) F-35 (PGU-47 25 x 137mm)

Gunships

AC-130 (25mm, 40mm, 105mm)

Armed Drones

MQ-9, MQ-?, Bayraktar TB2, Shadow...

8. Opportunities ...Nontrivial chance of capturing a substantial part of the market

US Army: (DoD FY 2019 Budget Exhibit P-1 FY 2019, P. A-17C)

20, 25, 30mm \$113M/yr

USMC: (DoD FY 2019 Budget Exhibit P-1 FY 2019, P. N-20C)

20, 25, 30mm \$34M/yr

US Air Force: (DoD FY 2019 Budget Exhibit P-1 FY 2019, P. F-19C)

20, 25, 30mm+ \$193M/yr

8. Opportunities KU Aerospace: open for business...

Exclusive & non-exclusive licenses available for:

-US, Europe-Wide, Germany, Norway, Australia, UK, Netherlands, France, Belgium, Spain, Italy, Japan, Korea, Singapore

- Engineering support: 3+ yr acceleration, data sets (as allowed by law)
 - -On site support up to 2 yrs
- · Operational Units:

KANSAS

- -"What's possible whole new mission sets" briefings (ITAR restricted)
- · Corporate Labs:
 - -"What's possible" briefings (ITAR restricted & open)
 - -Short courses (1 hr to 2 days)
 - -Patent/IP structure, legal offense/defense planning & weaponization
- · Government Labs:
 - -Next research steps & navigating 15 CFR § 700 to 700.93 DPA
 - -Short courses (1hr to 2 days)

