

Pursuing Art-of-the-Possible

Assessing Potential Capability
Enhancements of Hand Grenades
Filled with CL-20 Compared to
Current Mk3A2 & M67
Hand Grenades

Jonathan Geymer, Mike Kramer and Robert M. Serino 21 September 2022

UNCLASSIFIED 2022 Applied Research Associates - ARA Distribution A

Abstract

- Hand grenades have served the US Military as essential offensive and defensive weapons for decades.
- CL-20 has shown significant potential as an advanced explosive material for both US and foreign applications.
- We modeled a comparison between well-known and currently used hand grenades of the US military against a hypothetical CL-20 fill.
- Calculations performed show up to 52% increase in lethal fragmentation radius.
- The net result is a potential doubling of Lethal Area by using a CL-20 formulation fill versus a current formulation fill.

An ARA Model of M67 Capability, A Look at Current Comp B Fill Versus Potential CL-20 Fill

Current Fill
Comp B
TNT + RDX

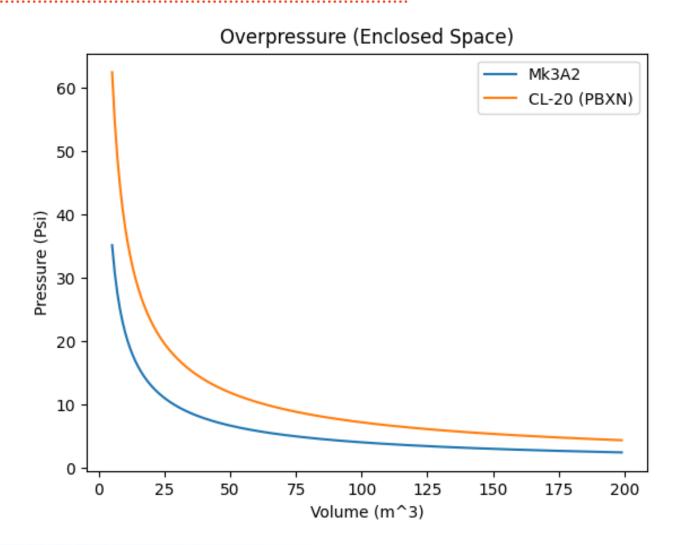
CL-20 Fill 95% CL-20 5% Viton

Current Comp B (TNT + RDX)
5.0 meters Lethality Radius
75 square meters Lethality Area
Relative Lethal Area = **X**

CL-20 (95% CL-20 + 5% Viton)
7.6 meters Lethality Radius
180 square meters Lethality Area
Relative Lethal Area = **2X**

Results and Discussion

In the next few charts, we present the following modeling results:


- Overpressure Comparison (Mk3A2 vs CL-20)
- Overpressure Effects
- Peak Underwater Pressure
- M67 Fragmentation Velocity
- Energy of Fragments
- Lethality and Injury from Fragments
- Lethal Area Comparison

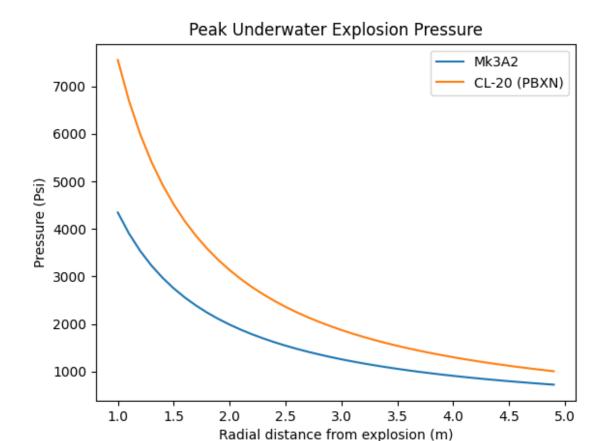
Please also find a link to our underpinning paper in the Summary and Conclusion chart.

Overpressure Comparison (Mk3A2 vs CL-20)

Overpressure Effects

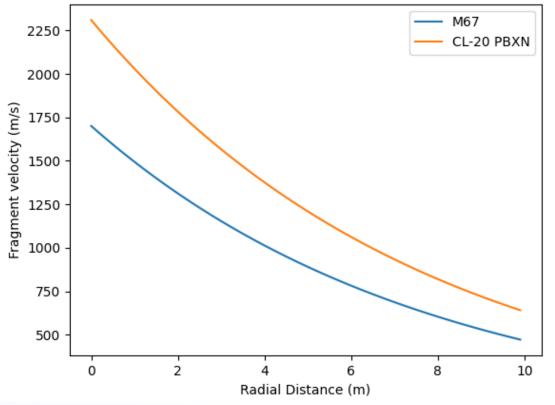
Peak Overpressure	Max Wind Speed	Effects on Structures	Effect on Human Body
1 psi	38 mph	Window glass shatters	Light injuries from fragments
2 psi	70 mph	Moderate damage to houses	Injuries common
3 psi	102 mph	Residential Structures Collapse	Fatalities may occur
5 psi	163 mph	Most buildings collapse	Injuries are universal, fatalities occur
10 psi	294 mph	Reinforced concrete buildings are severely damaged	Most people are killed

Improvements with CL-20


122% Volume increase over Mk3A2 to reach same overpressure effects

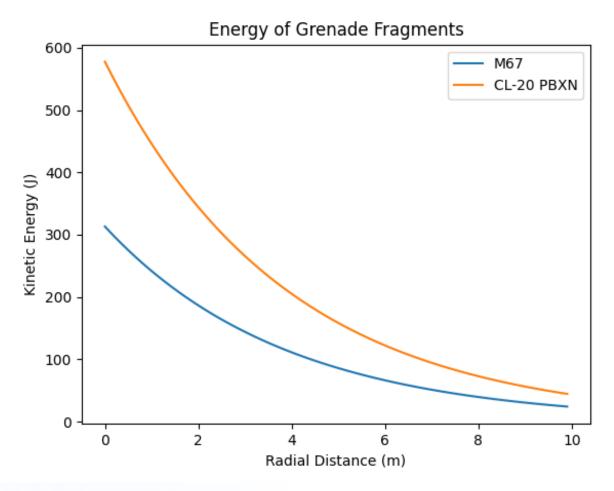
Underwater Application

51% Increase in Average Pressure (0 - 5 m)



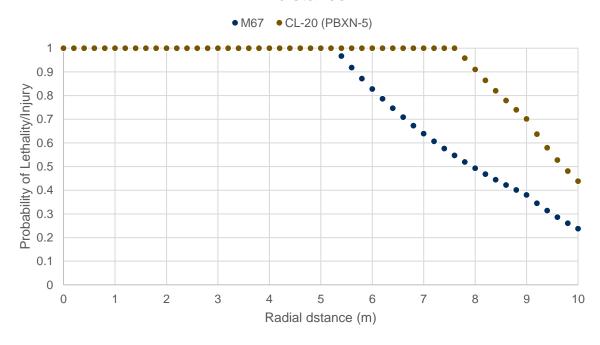
M67 Fragmentation Velocity

Initial Velocity		Increase
M67	1700.66 m/s	35.8%
CL-20	2309.97 m/s	



Energy of Fragments

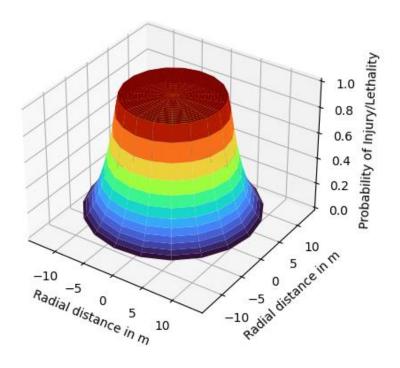
84.5% Increase in Fragment Energy

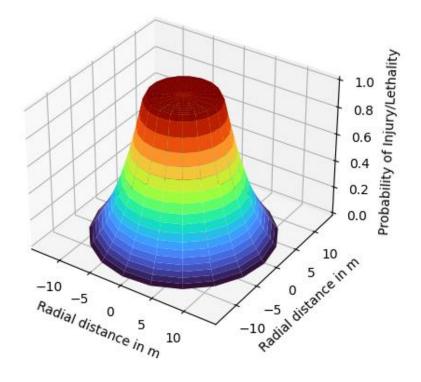


Lethality and Injury from Fragments

- Only Lethal if graph is equal to 1 (> 80 J and > 1 Fragment/m^2)
 - Otherwise probability of Injury

Lethality and Probability of Injury as a function of Radial distance




Lethal Area Comparison

Lethal Area		Increase
M67 ($R = 5 \text{ m}$)	78.54 m^2	131%
CL-20 (R = 7.6 m)	181.46 m^2	, .

CL-20 (PBXN-5)

M67

Summary and Conclusion

- In our modeling of a comparison between well-known and currently used hand grenades of the US military against a hypothetical CL-20 fill, we found the potential for a 52% increase in lethal fragmentation radius.
- The net result is a potential doubling of Lethal Area by using a CL-20 formulation versus a current formulation.
- Costs for upgrade would be relatively small for capability afforded.
- The results of modeling suggest the appropriateness for taking next steps.

By Jonathan Geymer <u>igeymer@ara.com</u>, Mike Kramer <u>mkramer@ara.com</u> and Robert M. Serino <u>rserino@ara.com</u>, Applied Research Associates – ARA, 801 North Quincy Street, Arlington, Virginia 22203 (703)816-8886.

ARA Paper on "Assessing Potential Capability Enhancements of Hand Grenades Filled with CL-20 Compared to Current Mk3A2 & M67 Hand Grenades": https://acrobat.adobe.com/link/review?uri=urn:aaid:scds:US:c44f0204-bcc9-374c-83e1-197513c91b0c

About ARA - 40 Years Supporting DOD, \$450M FY22 and 1,600 Employee/Owners

Lab Reproduction of

Harsh Environments

- WEAPONS DEVELOPMENT Conventional all-up round, nuclear, hypersonic subcomponents, space weapon system development
- BLAST & THERMAL SOLUTIONS First-principles modeling, planning and testing
- NON-KINETIC & DIRECTED **ENERGY WEAPONS** Research, development, complete weapon system integration
- ENGINEERING APPLICATIONS Penetration, dispersion, reaction lifecycle software engineering

- · Blast/Frag, Thermal
- · Shock Physics
- · Friction/Shear
- Component Fragility
- · Small Diameter Bomb II
 - 10+ years support

Design

Tools

ARA TEST RANGES

- Test ranges in Wyoming, Colorado, New Mexico, and Texas accommodate up to 10,000 lbs NEW tests
- Explosive Storage and Transportation
- Full-suite Instrumentation
- · Fast-response Testing
- ARA Operated Moriarty NM Test Range: Dedicated test range, 10,000 sqft office and fabrication space
- . ARA Contracted Test Sites: Nine Mile Training Center (TX), U. Denver East Range (CO)
- Govt. Supported Test Sites: Camp Guernsey (WY), Kirtland AFB (NM)

FULL-SCALE COUNTER-WMD TEST SUPPORT

ARA provides development, test operations & technology support to DTRA for Counter-WMD technology testing.

Explosives

- Rad/Nuc Technologies
- Specialized Instrumentation
 Chem/Bio Testing
- · Hard Target Defeat
- Counter-UAS

Leveraging simulation-based design to create design-to-demil solutions that are EFFECTIVE, LOW-COST, and RAPIDLY FIELDABLE.

