

An Alternative Method for Determining Penetration Limit Velocities Using Residual Velocity Data

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Kenneth Hohnecker, Christopher Drake, Michael Cataldi

US Army, DEVCOM, Picatinny Arsenal, NJ

Email: kenneth.h.hohnecker.civ@army.mil

Presented at the 2022 2022 Future Force Capabilities Conference and Exhibition Sept. 2022

UNCLASSIFIED Distribution A: Approved for Public Release; Distribution is Unlimited Controlled by: DEVCOM AC Controlled by: FCDD-ACM-MI CUI Category: UNCLASSIFIED Distribution Statement A: Approved for Public Release; Distribution is Unlimited POC: Ken Hohnecker, (973) 724-7633

PRESENTATION OUTLINE

- Problem Statement
- Binary Data
- Current Methods
- Proposed Methodology
- Experimental Results
- Conclusion
- Future Work

PROBLEM STATEMENT

Determine the velocity at which a projectile will penetrate a target with some given probability (known as a *limit velocity (LV)*

- <u>The</u> limit velocity is typically associated with the V50 (i.e., velocity at which a projectile penetrates 50% of the time) but other limit velocities may also be deemed important (e.g., V10, V90, etc.)
- LVs are commonly found in small arms requirement documents since they are a minimum requirement for terminal effectiveness behind a protective barrier

BINARY DATA

• The issue with *binary* data:

- Information sparse (0/1, yes/no, go/no-go);
 <u>continuous</u> data contains more information (velocities, weights, etc.)
- Requires many more samples than continuous data to acquire statistically meaningful results or build surrogate models
- Are we leaving information on the table?
 - Can we extract more information from the test?
 - Are there other things we can measure in parallel?

Is there any way we can avoid collecting only *binary* data?

CURRENT TESTING METHODS

• 3 Phase Optimal Design (3POD) [adaptive]

- The most efficient binary data gathering methodology we have today
- [Phase 1] Finds go and no-go
- [Phase 2] Establish overlap
- [Phase 3] Strengthen overlap
- Hone area of interest (V50, V90, etc.)

Langlie [adaptive]

Common DoD method of sequentially gathering binary data developed in 1962

Brute force array [static]

 Build test assets at varying and equal spacing to cover area of interest (could potentially miss ZMR)

CURRENT MODELING METHODS

- Binary logistic regression
 - Looks at penetration / no penetration data only (Ex: logit, probit models)
 - Generates probabilistic model which requires many samples to obtain useful confidence bounds and predictions
 - Models may sometimes struggle at the far tails
 - Zone of Mixed Results (ZMR) historically necessary (although new methods exist to bypass this requirement using Firth bias-adjusted estimates)
 - **Residual velocity**
 - Looks at residual velocity data
 - Ex: Jonas-Lambert
 - No proposed means of computing confidence intervals
 - Current methods do not work for limit velocities other than V50

PROPOSED METHODOLOGY DISCUSSION

The proposed method uses projectile residual velocity (V_r) data in order to maximize "information" obtained from test

PROPOSED METHODOLOGY DISCUSSION (CONT.)

- Need to model V_r as a function of striking velocity (V_s); while there are existing models, the proposed V_r model was derived with the express purpose of being amenable to statistical analysis
- Current V_r models cannot accept non-penetrating test shots as data; proposed method addresses this issue, thus eliminating "discarded" test shots

PROPOSED METHODOLOGY DISCUSSION (CONT.)

- Use standard non-dimensionalization techniques and application of first principles (i.e., Newton's Law)
 - Assume instantaneous target resistance is a function of projectile velocity, contact area, and a "strength" parameter

Apply constraints

- No resistive force when projectile comes to rest; finite-time penetration event
- Assume "average effective deformation" of projectile changes approximately linearly across small changes in impact velocity
- Define residual velocity as the amount of "unconsumed" velocity when the projectile reaches the back of the target
 - This permits "negative" residual velocities if the projectile does not penetrate

PROPOSED METHODOLOGY DISCUSSION (CONT.)

 Assume variation in residual velocity is dominated by projectile yaw, mass erosion, and the "strength" parameter; this results in the below distribution of V_r:

$$\begin{cases} V_r \sim \operatorname{sign}(X) |X|^{\frac{1}{2-\alpha}} \\ X \sim v_s^{2-\alpha} - \frac{U^2}{v_\tau^{\alpha} \left[1 - c\left(\frac{v_s}{v_\tau} - 1\right)\right]} \end{cases}$$

 v_s = striking velocity on the target v_{τ} = limit velocity of interest (e.g., τ can be 50, 90, etc.) α , c = empirical coefficients U = random variable

- The distribution of V_r is reduced to a 1D distribution
- It can be shown by the Central Limit Theorem implies that U is approximately log-normally distributed

PROPOSED METHODOLOGY DISCUSSION (CONT.)

- Use Maximum Likelihood Estimator (MLE) to approximate limit velocity
- For test shots that do not penetrate, use the probability of penetration in the likelihood function in place of the residual velocity distribution (mixed continuous-discrete likelihood function)
- Use parametric bootstrapping to determine confidence interval around estimated limit velocity

EXPERIMENTAL RESULTS

- Obtained sizable data set of a nonmonolithic projectile against both hard and soft metallic target plates (enough data to get "true" limit velocities)
- Performed Monte Carlo simulations of typical plate penetration tests
 - Residual velocities were randomly drawn from data set; V50, V90, and confidence intervals were calculated for each "test"
 - Residual velocities were sampled using two methods (Gaussian kernel, log-normal distribution of U)

X

EXPERIMENTAL RESULTS

Sample V50 calculation using V_r method; this was performed for each simulated "test"

Initial investigation shows V_r method has potential to be on the order of 2 to 3 times more efficient (in terms of shots required per penetration test) than current binary regression methods for small-sample penetration tests

FUTURE WORK

- Perform additional large-scale penetration tests across multiple calibers, projectiles, and target sets to test generality of V_r method
- Research and develop new V_r companion testing method (adaptive data gathering algorithm) to further optimize efficiency

Questions?

UNCLASSIFIED

Back-ups

UNCLASSIFIED

UNCLASSIFIED Distribution A: Approved for Public Release; Distribution is Unlimited

BACK-UPS

UNCLASSIFIED Distribution A: Approved for Public Release; Distribution is Unlimited