Bent Pin Analysis

Methodology and Best Practices

Eric McDonough Senior Staff Engineer

May 10-11, 2022

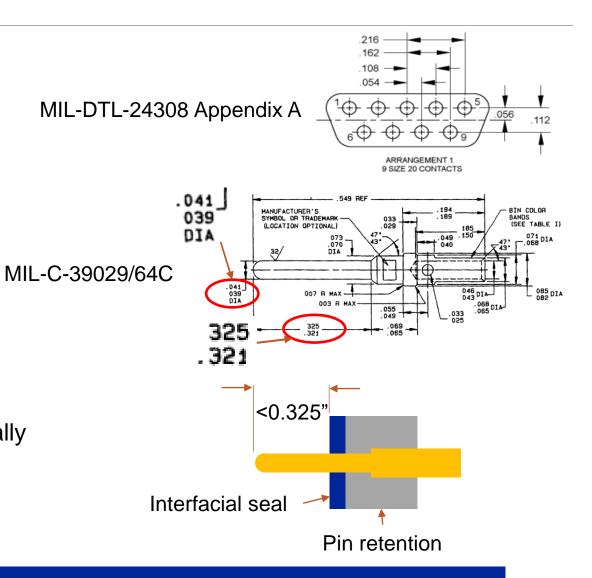
Challenges

- Smaller fuzes
 - Higher pin density
 - Less space for connectors
 - Example different "D-Sub" families
- Considerations
 - Safety Prevent arming sequence progression
 - Reliability Minimize number of mission failures
 - Testability Interface to arm w/o environments
- Analysis
 - Deciding on number of connectors
 - Which connections to analyze
 - Assigning pins
 - Determining the effect

Smaller Fuzes Increase Challenges that Methodical Analysis can Address

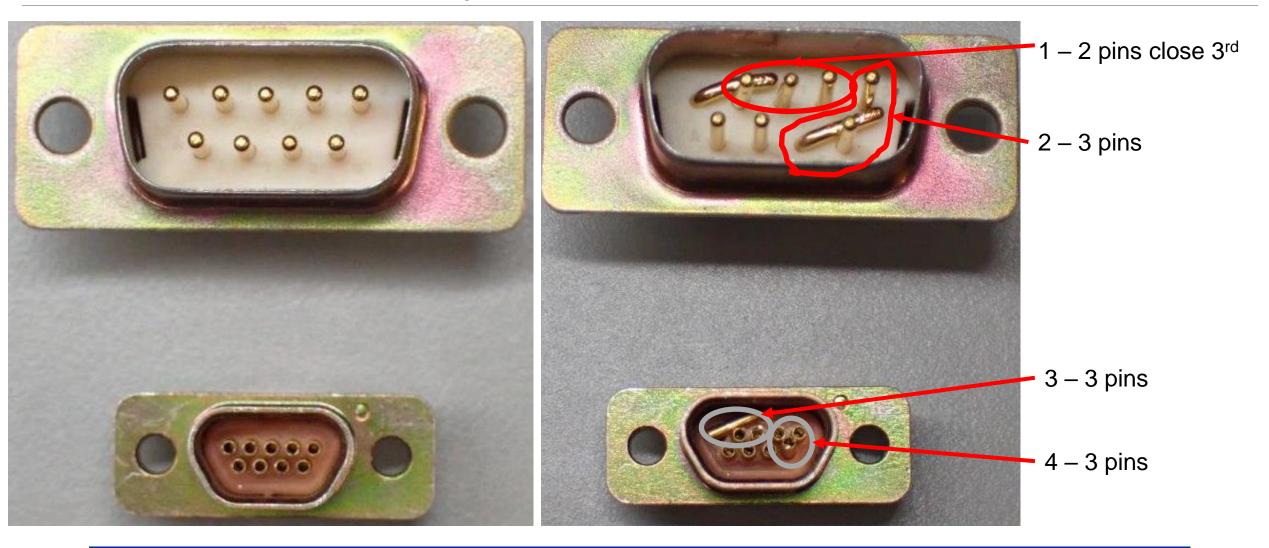
Considerations for Connector(s) in Design

- Requirement flow down
 - JOTP-053 Section 5.1.8 Shorting of I/O (Electrical Stress Test)
 - Test where analysis cannot predict output
 - Criteria for analysis not defined
- Order of preference no perfect option
 - 1. Only assign signals necessary for the fuze to function
 - 2. Assign test signals to a separate connector
 - 3. Single connector w/ test signals/functional signals & mitigations
- Option 3 is often preferred choice
 - Connectors are large components
 - Can be some of the most expensive components
 - Long lead times
 - Mitigations can be designed to reduce safety impact


- Testability mitigation examples
 - Isolating test signals with no connects/grounds
 - Unique signals (level/pattern)
 - Omitting signals in system wiring
 - Multiple Inputs

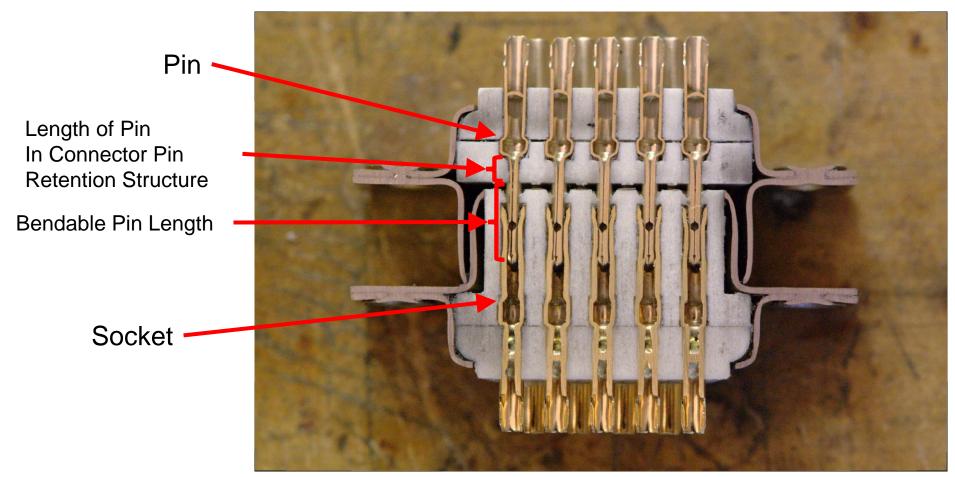
Preference	Safety	Design Complexity	Testability
1. Only Functional Signals			
2. Two Connectors			
3. Single Conn w/ Mitigations			
4. Single Conn w/o Mitigations			

Intentional Design Principles Needed to Ensure Safety and Testability Needs are Met in System Footprint


Pins Combinations to Analyze

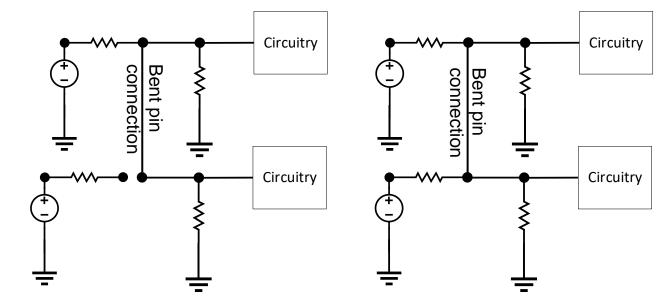
- Which pins can be contacted
 - Dimensions to consider
 - Pin spacing/length/diameter
 - Interfacial seal/insulation/retention dimensions
 - Dimensions can be hard to find work with supplier
 - Just pin length can be overly conservative
 - Multiple pins possible
 - Don't forget shell
- Observations about example
 - Pin 3 is long enough to contact all pins depending on length of pin retention material
 - Multiple pins can be contacted horizontally and diagonally

Consideration of Pin/Connector Interface Required to Determine Number of Contacts

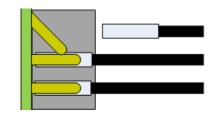

Pins Combinations to Analyze

Muti Pin Contact Can be Contacted in Multiple Orientations

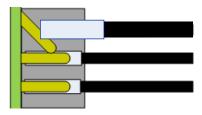
Pins Combinations to Analyze – Mated Pair Cross Section


See Citation for Picture at End of Presentation

Understanding the Structure of the Connector Is Necessary to Determine Bendable Pin Length

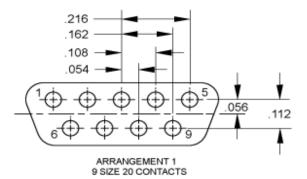

Approved for public release, 22-0727

Signal Analysis


- Two sets
 - Connected to own socket
 - Not connected to own socket
- Types
 - Loads Pulled down
 - Sources/Loads Pulled up
- Understand combinations of circuits
 - Extra sources bus contention/voltage levels
 - Extra loads thresholds/pull down source
 - Extra sources and loads
 - Multi-pin contact combinations

Methodical Approach to Determining Circuitry Interactions

Without Connection to Own Socket



With Connection to Own Socket

NORTHROP GRUMMAN

Picking Pin Assignments

- Understand which pins can contact
- · Characteristics of signals at connector/how circuits interact
- Mission Phase
 - Pre-commit (e.g., communications power, external firing, umbilical)
 - Post-commit (arming power, status lines)
- Functionality
 - Power
 - Sensor or event (eg umbilical)
 - Status
 - Test
- Group Signals Best Practice
 - Separate Pre-commit/post commit to limit back drive risk
 - Pay special attention to sensor/event combinations
 - Ensure test signals cannot be driven to an active state by bent pin combinations
 - Grounds can be effective assignments for challenging locations

NORTHRO

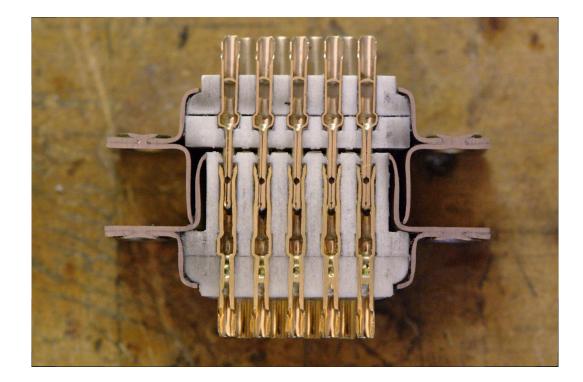
Analysis Output

- Safety Impacts
 - Ensure environment is sensor input not validated
 - Ensure environment is not bypassed
- Reliability Impacts
 - Degraded functionality (Modes/features)
 - Loss of mission (Shorts/Loss of Arming)
- Results
 - Fuze Level
 - Update design interface to tolerate bent pin
 - System Level
 - Factory access connectors for mission critical signals
 - System/sub-system level resistance checks

Verify No Safety Faults, Minimize Reliability Impacts via Design and System Test

Takeaways

- Smaller systems are driving pin pitch/size smaller
- Balance safety, reliability, and testability when designing a fuze connection interface
- Determining which pins can contact requires detailed information about connector construction
- Signal categorization and analysis identifies most sensitive interfaces
- Assign pins to prevent safety faults first, reliability impact second
- Use analysis results to aid in system testability


Smaller Fuzes Increase Challenges that Methodical Analysis can Address

Questions?

Citations

Citation

License	Author	Source	Description/Link
Creative Commons Attribution-Share Alike 4.0 International	TubeTimeUS	Own Work	Cross section of 9 pin connector