Modeling paired-choice data to effectively predict human evaluations of individual performance

Josh Fiechter Cognitive Data Scientist Kairos Research

General setup

 Human evaluators provide informed assessments of individuals that can be leveraged for picking optimal people for certain tasks and/or roles

General setup

- Human evaluators provide informed assessments of individuals that can be leveraged for picking optimal people for certain tasks and/or roles
- But:
 - These evaluations are costly to implement
 - Human raters' criteria might not be consistently enforced

General setup

- Human evaluators provide informed assessments of individuals that can be leveraged for picking optimal people for certain tasks and/or roles
- But:
 - These evaluations are costly to implement
 - Human raters' criteria might not be consistently enforced
- A reliable model of human evaluators would allow us to:
 - Assess individuals with greater speed and consistency
 - Minimize the burden on human raters

- 81 operators spread across 8 nationwide sites
- 76 attributes to serve as predictors
 - Demographic factors plus physical, intellectual, and personality traits
- 3 scenarios on which operators are evaluated
- 3-4 evaluators nested within each site
 - Evaluations are in the form of **paired choices**
 - E.g., Should <u>Bob</u> or <u>Tom</u> take part in this task?
- 3771 total choices

Site	Operator1	Operator2	win1	win2	Scenario	Evaluator	Age	
Site A	162	180	1	0	1	1	1	
Site A	216	162	1	0	1	1	13	
Site A	125	216	0	1	1	1	11	
Site A	102	180	1	0	1	1	1	
Site A	102	87	0	1	1	1	-14	

76 • • differential features

3771 rows

Site	Operator1	Operator2	win1	win2	Scenario	Evaluator	Age
Site A	162	180	1	0	1	1	1
Site A	216	162	1	0	1	1	13
Site A	125	216	0	1	1	1	11
Site A	102	180	1	0	1	1	1
Site A	102	87	0	1	1	1	-14

76 ••• differential features

Operator1 and **Operator2** are the two people being compared on a given trial •

3771 rows

Site	Operator1	Operator2	win1	win2	Scenario	Evaluator	Age	
Site A	162	180	1	0	1	1	1	
Site A	216	162	1	0	1	1	13	
Site A	125	216	0	1	1	1	11	
Site A	102	180	1	0	1	1	1	
Site A	102	87	0	1	1	1	-14	

Note how individuals move between these two columns

•

3771 rows

76

features

differential

win1 is our outcome of interest

Site	Operator1	Operator2	win1	win2	Scenario	Evaluator	Age	
Site A	162	180	1	0	1	1	1	
Site A	216	162	1	0	1	1	13	
Site A	125	216	0	1	1	1	11	
Site A	102	180	1	0	1	1	1	
Site A	102	87	0	1	1	1	-14	

76 • • differential features

3771 rows

Data contain 76 **differential features** (e.g., Age_{Operator1} – Age_{Operator2})

Site	Operator1	Operator2	win1	win2	Scenario	Evaluator	Age	
Site A	162	180	1	0	1	1	1	
Site A	216	162	1	0	1	1	13	
Site A	125	216	0	1	1	1	11	(
Site A	102	180	1	0	1	1	1	
Site A	102	87	0	1	1	1	-14	

76 • differential features

3771 rows

Objectives

- Build a model that predicts human evaluations of individuals
- Evaluate which attributes most strongly influence evaluation
- Evaluate the predictive capabilities of the model
 - I.e., cross-validate the model on novel observations

• We fit a Bradley-Terry-Luce (BTL) model of paired choices

- We fit a Bradley-Terry-Luce (BTL) model of paired choices
- In its simplest from, the BTL model estimates log latent ability, $\lambda,$ for every individual
 - logit(*P*[*win1*]) ~ *Bernoulli*($\lambda_i \lambda_j$)

- We fit a Bradley-Terry-Luce (BTL) model of paired choices
- In its simplest from, the BTL model estimates log latent ability, $\lambda,$ for every individual
 - logit(P[win1]) ~ $Bernoulli(\lambda_i \lambda_j)$
- BTL models can also be written as GLMs:
 - logit(*P*[win1]) ~ *Bernoulli*($\beta_0 + \sum_{n=1}^N W_n \beta_n + \sum_{k=1}^K X_k \beta_k$)

- We fit a Bradley-Terry-Luce (BTL) model of paired choices
- In its simplest from, the BTL model estimates log latent ability, $\lambda,$ for every individual
 - logit(P[win1]) ~ $Bernoulli(\lambda_i \lambda_j)$
- BTL models can also be written as GLMs:
 - logit(*P*[win1]) ~ *Bernoulli*($\beta_0 + \sum_{n=1}^N W_n \beta_n + \sum_{k=1}^K X_k \beta_k$)

Bias in favor of Operator1

- We fit a Bradley-Terry-Luce (BTL) model of paired choices
- In its simplest from, the BTL model estimates log latent ability, $\boldsymbol{\lambda},$ for every individual
 - logit(P[win1]) ~ $Bernoulli(\lambda_i \lambda_j)$
- BTL models can also be written as GLMs:
 - logit(*P*[*win1*]) ~ *Bernoulli*($\beta_0 + \sum_{n=1}^{N} W_n \beta_n + \sum_{k=1}^{K} X_k \beta_k$)

```
Operators 1 and 2
receive respective
weights (W_k) of 1
and -1
\beta_n is estimated latent
ability
```


- We fit a Bradley-Terry-Luce (BTL) model of paired choices
- In its simplest from, the BTL model estimates log latent ability, $\lambda,$ for every individual
 - logit(P[win1]) ~ $Bernoulli(\lambda_i \lambda_j)$
- BTL models can also be written as GLMs:
 - logit(*P*[*win1*]) ~ *Bernoulli*($\beta_0 + \sum_{n=1}^N W_n \beta_n + \sum_{k=1}^K X_k \beta_k$)

Coefficients (β_k) are estimated for differential values of covariates (X_k)

- logit(P[win1]) ~ $Bernoulli(\beta_0 + \sum_{n=1}^N W_n \beta_n + \sum_{k=1}^K X_k \beta_k)$
- We made three noteworthy modifications to the model above:
 - 1) Incorporated hierarchical model structure

- logit(P[win1]) ~ $Bernoulli(\beta_0 + \sum_{n=1}^N W_n \beta_n + \sum_{k=1}^K X_k \beta_k)$
- We made three noteworthy modifications to the model above:
 - 1) Incorporated hierarchical model structure

- logit(P[win1]) ~ $Bernoulli(\beta_0 + \sum_{n=1}^N W_n \beta_n + \sum_{k=1}^K X_k \beta_k)$
- We made three noteworthy modifications to the model above:

KAIROSRESEARCH

1) Incorporated hierarchical model structure

- logit(P[win1]) ~ $Bernoulli(\beta_0 + \sum_{n=1}^N W_n \beta_n + \sum_{k=1}^K X_k \beta_k)$
- We made three noteworthy modifications to the model above:
 - 1) Incorporated hierarchical model structure

- logit(P[win1]) ~ $Bernoulli(\beta_0 + \sum_{n=1}^N W_n \beta_n + \sum_{k=1}^K X_k \beta_k)$
- We made three noteworthy modifications to the model above:
 - 1) Incorporated hierarchical model structure
 - 2) Used horseshoe priors (Carvalho et al., 2010) for regularized estimates
 - Estimation conducted via MCMC sampling in Stan (Carpenter et al., 2017)

- logit(P[win1]) ~ $Bernoulli(\beta_0 + \sum_{n=1}^N W_n \beta_n + \sum_{k=1}^K X_k \beta_k)$
- We made three noteworthy modifications to the model above:
 - 1) Incorporated hierarchical model structure
 - 2) Used horseshoe priors (Carvalho et al., 2010) for regularized estimates
 - Estimation conducted via MCMC sampling in Stan (Carpenter et al., 2017)
 - 3) All inputs X_k were *z*-transformed to remove any artifacts from differences in scale

 Top predictors: <u>Predictor</u> 	<u>Estimate</u>	<u>Change in P(w</u>	<u>vin1)</u>
Values	0.50	0.12	
Picture completion	0.49	0.12	
Depth perception	-0.41	-0.10 For 0.08 cha we'd -0.06 corr	For every 1 SD
Tender-mindedness	0.33		change in predictor,
Wrist extension	-0.23		corresponding
Excitement seeking	0.21	0.05	changes to the win
Impulsivity	0.20	0.05	probability
Assertiveness	0.15	0.04	
Altruism	-0.13	-0.03	
Contrast sensitivity	0.13	0.03	

KAIROSRESEARCH

Leave-one-out cross-validation yields highly accurate predictions • AUC = 0.94

Leave-one-**person**-out crossvalidation also yields accurate predictions

• AUC = 0.77

There is **no overall trend** suggesting that low or high performance makes an individual easier to predict

•
$$r = -0.0^{\circ}$$

Takeaways

- The model performs well when predicting novel data
 - The model was extremely accurate at predicting novel instances of pairings (i.e., LOO CV)
 - Critically, the model was accurate at predicting novel people (i.e., LOPO CV)

Takeaways

- The model performs well when predicting novel data
 - The model was extremely accurate at predicting novel instances of pairings (i.e., LOO CV)
 - Critically, the model was accurate at predicting novel people (i.e., LOPO CV)
- Prediction accuracy is independent of observed win rate
 - Worse- and better-performing individuals are all predicted with roughly the same accuracy

Takeaways

- The model performs well when predicting novel data
 - The model was extremely accurate at predicting novel instances of pairings (i.e., LOO CV)
 - Critically, the model was accurate at predicting novel people (i.e., LOPO CV)
- Prediction accuracy is independent of observed win rate
 - Worse- and better-performing individuals are all predicted with roughly the same accuracy
- Our hierarchical BTL model is a promising step toward automating evaluations of individual performance

