

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

(U) Energetic Defects Characterization (EDC)

(U) An Al approach to automated defect recognition

Antonio Aguirre, Victoria Gerardi

Mathematician | Operations Research Analyst

ESIC—Systems Engineering Directorate—Systems Analysis Division

Distribution Statement A: Approved for public release; Distribution unlimited.

Project Overview

What is EDC?

Why does it matter?

ENERGETIC DEFECT CHARACTERIZATION

Problem:

- Defective artillery <u>have caused</u> catastrophic failures at gun launch, with consequences resulting in fatalities and damage to personnel and platforms.
- Current and future energetic requirements exceed prior gun/barrel designs and flight environments.

Solution:

- Technical Approach

 Develop capabilities to enable experimental and computational evaluation & prediction of energetics with defects, AI/ML on images.

Deliverable

Self-sufficient, stand-alone predictive capability

WHERE WE FIT INTO THE BIG PICTURE?

Imaging with defect detection in mind

- Instrumentation
- Calibration

Reporting with traceability and AI in mind

- Meta data
- Defect categorization

X-ray image collection

Data curation

Manufacturing

Augment human-in-the-loop CNN output can inform manufacturing processes

Predictions + Traceability = Optimized process control

Manufacturing **Processes**

Support categorization of defect hazard levels

Defect replication/testing

Better munitions

- Iteratively smarter inputs/outputs
- Safer and increased reliability

AI/ML

AI/ML

learning/prediction

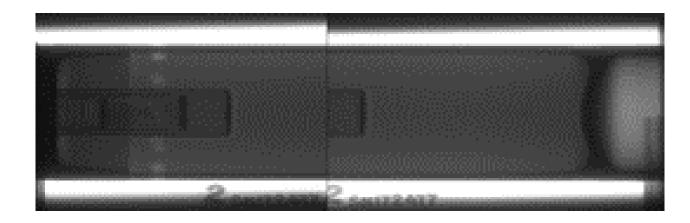
- Powerful learning tools
- Academic/industry precedence for AI + X-ray

The Data

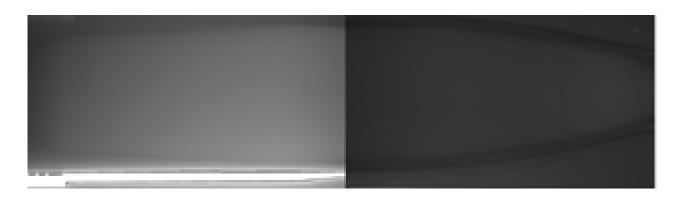
What format?

How much?

X-RAY DATA

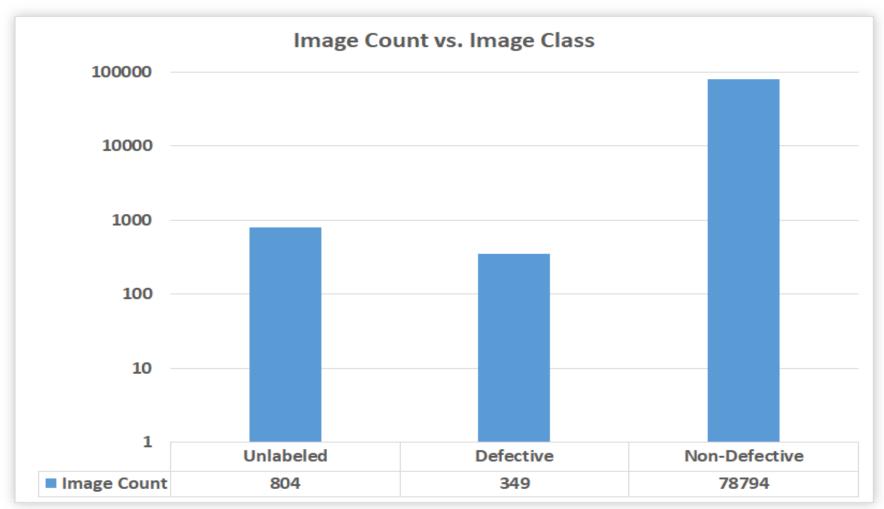


Type-1	2012—2015	Pressed	X-ray	4	600 GB
Munition	Date	Explosive	Format	Aspects	Set Size
Type-2	2020—2021	Melt Pour	X-ray	1	680 GB



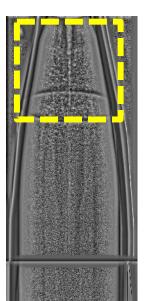
TYPE-2 IMAGE SET CHARACTERISTICS

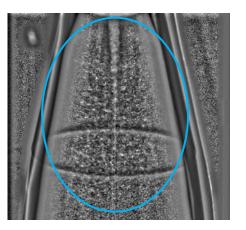
- Data suggests that only 1 in ~217 munitions is defective
- · Will have to overcome data imbalance and any mislabeling



Considering Data Quality

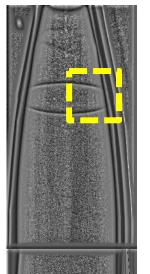
Pedigree of labels?



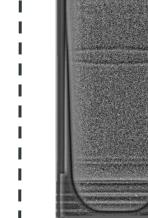


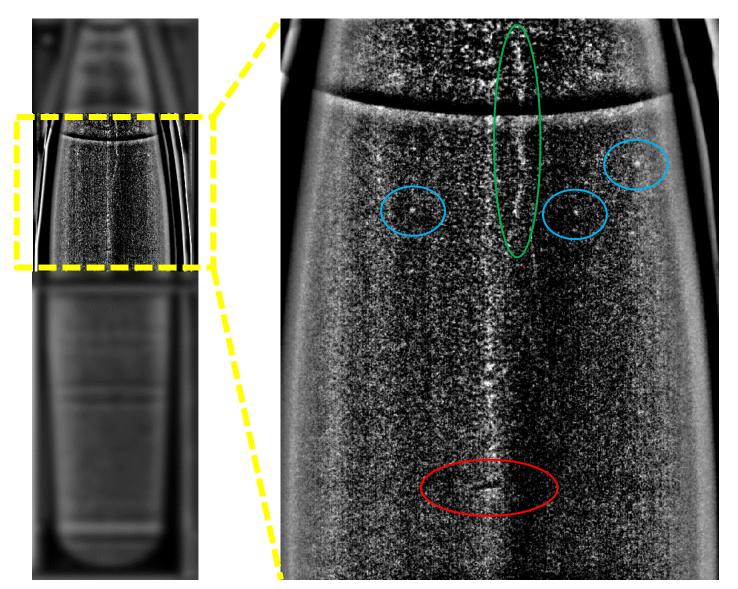
- Labeled Defective
- Shrink Porosity
- 37 Images

- Cracks
- 58 Images

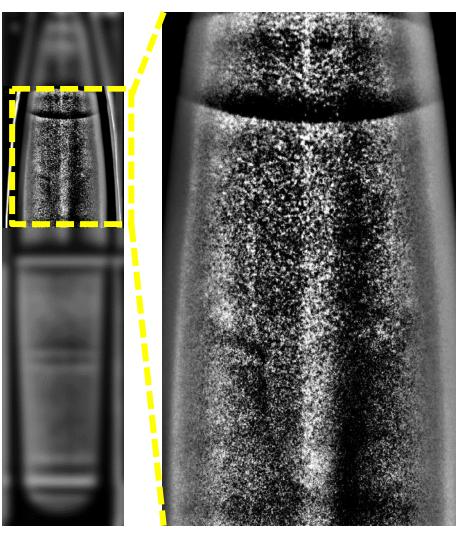


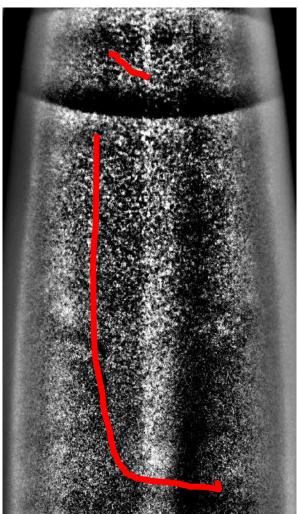
- Foreign Material
- 8 Images





- PipingGas/shrink porosityCrack
- Is the data accurately curated for AI/ML?
 - Image below tagged as Nondefective
 - SME confirmed presence of anomalies
 - Possibly not sufficient to fail the Type-2 munition MILSPEC

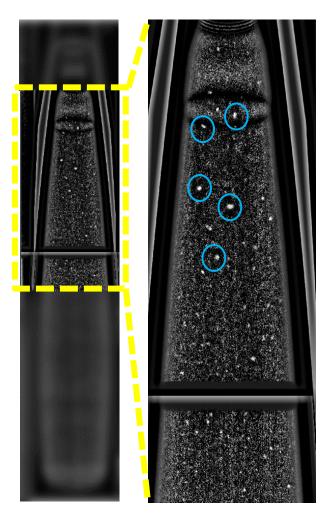


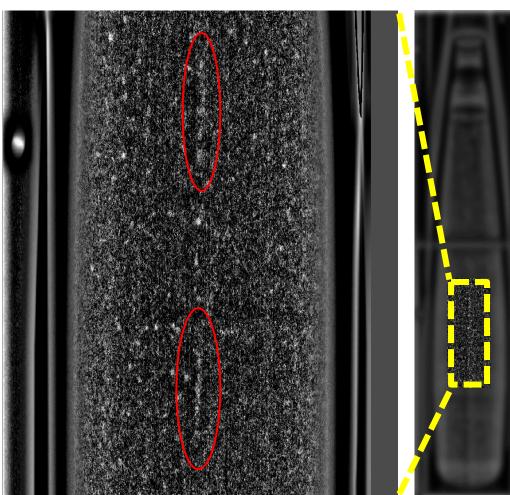


- Piping

 Gas/shrink porosity

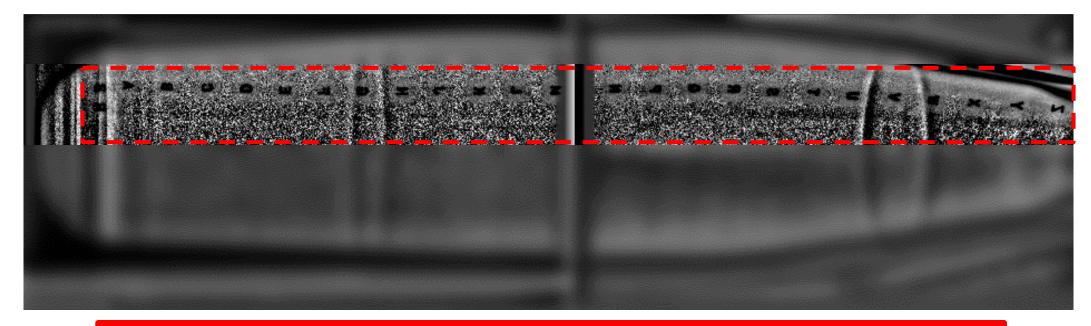
 Crack
- Is the data accurately curated for AI/ML?
 - Image below tagged as "Nondefective"
 - SME confirmed presence of anomalies
 - Possibly not sufficient to fail the Type-2 munition MILSPEC
 - Internal team assessed anomalies as a crack and the SME assessed as shrink porosity





- Piping
- Gas/shrink porosity
- Crack
- Is the data accurately curated for AI/ML?
 - Image not present in curation data but in the data set
 - SME confirmed presence of anomalies
 - Possibly not sufficient to fail the Type-2 munition MILSPEC

- Are the images consistent enough across class type?
 - Image below has the alphabet running along the munition
- Too easy to find inconsistencies by accident
 - Traditional CNN classification labels are set without uncertainty
 - A cat is a cat, a dog is a dog
 - In contrast, the Type-1 munition images & labels are riddled with oddities



Can we use an anomaly detector to remove or reclassify outlier data?

High-level Methodology

Crawl, walk, run

PATH TO TRAINING ARMY DEFECT DETECTION MODEL

QUIT Deployment

- Standalone application
- Extendible to new defects

Implementation / Augmentation

- Leverage literature review architectures
- Iterative model adaption
 - 3rd goal : multi-class + anomaly detection
 - 2nd goal: multi-class { defect₁, ..., defect_N, no defect }

1st goal: binary classification { defect, no defect }

Academic/Industry Literature Review

- Ready made CNN architectures for X-ray defect / anomaly detection
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512995/
 - https://github.com/maxkferg/metal-defect-detection
- Proven solutions are ripe for the picking, prevent reinventing the wheel, and are capable of transfer/extended learning

Clam

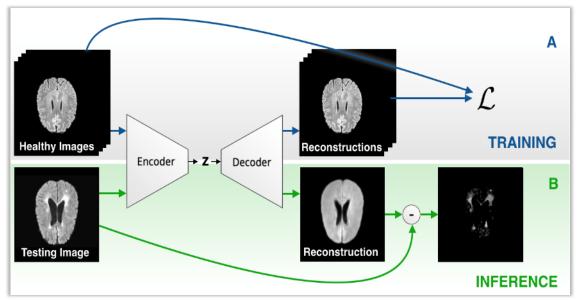
Binary Classification

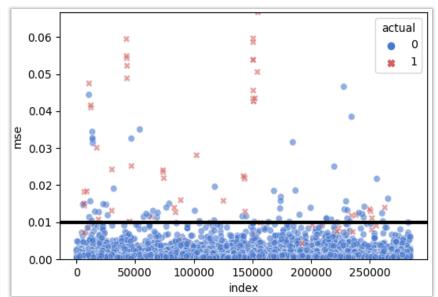
A layered defense approach

EDC AI PLANNED ARCHITECTURE

1st Layer: Autoencoder Anomaly Detector

- Al to characterize Non-defective munition images
 - Model learns a compression and decompression algorithm for Non-defective munition images
 - Trained model applied to Defective munition images will poorly compress and decompress resulting in a useful discriminator metric—reconstruction loss
 - Reconstruction loss analyzed via minimized cross-entropy to establish optimal threshold to flag outlier/anomalistic input images





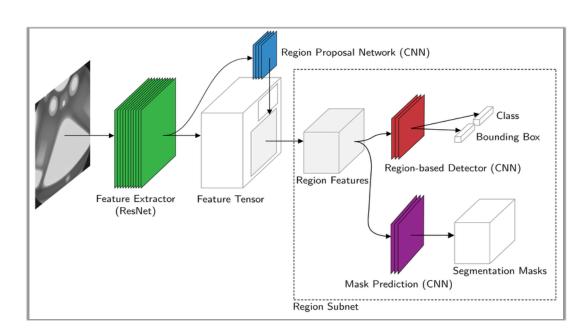
https://deepai.org/publication/autoencoders-for-unsupervised-anomaly-segmentation-in-brain-mr-images-a-comparative-study

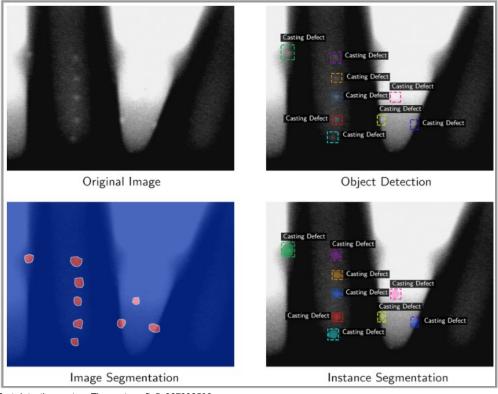
https://minimatech.org/wp-content/uploads/2021/02/threshold_line.png

EDC AI PLANNED ARCHITECTURE

• 2nd Layer : Feature Extractor + MILSPEC

- Line, edge, cluster detector
 - Length, width, density measurement
 - Assessments against MILSPEC thresholds
 - Flag and tag ROIs for expert analysis





https://www.researchgate.net/figure/The-neural-network-architecture-of-the-proposed-defect-detection-system-The-system_fig5_327392506

EDC AI PLANNED ARCHITECTURE

- 3rd Layer : Human-in-the-loop
 - Focused attention to flagged images failing 1st and 2nd layer AI filtering



https://windsorimaging.com/wp-content/uploads/2020/04/Windsor-Imaging-The-History-of-the-Digital-X-Ray.jpg

PLANNED ARCHITECTURE OVERVIEW

• 1st Layer: Autoencoder Anomaly Detector

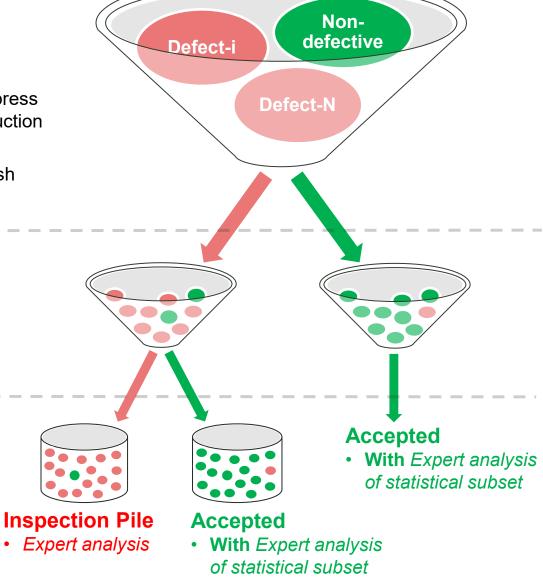
- Al to characterize Non-defective munition images
 - Model learns a compression and decompression algorithm for Nondefective munition images
 - Trained model applied to Defective munition images will poorly compress and decompress resulting in a useful discriminator metric—reconstruction loss
 - Reconstruction loss analyzed via minimized cross-entropy to establish optimal threshold to flag outlier/anomalistic input images

• <u>2nd Layer</u>: Feature Extractor + MILSPEC

- Line, edge, cluster detector
 - Length, width, density measurement
 - Assessments against MILSPEC thresholds
 - Flag and tag ROIs for expert analysis

• 3rd Layer: Human-in-the-loop

 Focused attention to flagged images failing 1st and 2nd order Al filtering



Computing Resources

What is HPCMP?

DOD HPCMP

DOD <u>High Performance Computing Modernization Program</u>

High Performance Computing Modernization Program

MISSION

development and transition into superior defens

VISION

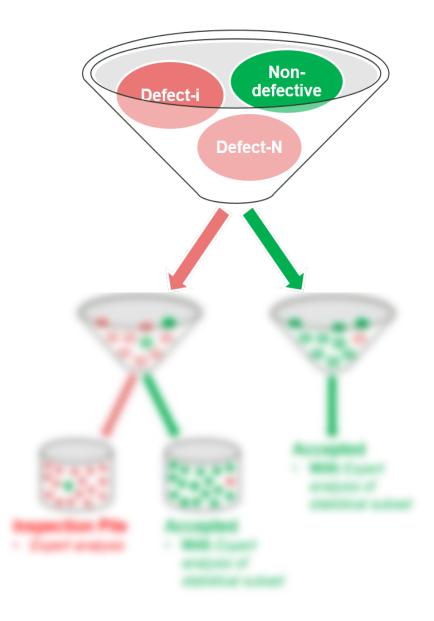
Our vision is one in which a pervasive culture exists within the DoD that drives the routine use of advanced computational environments to solve the Department's most critical mission challenges.

The U.S. Army *E*ngineer *R*esearch and *D*evelopment *C*enter

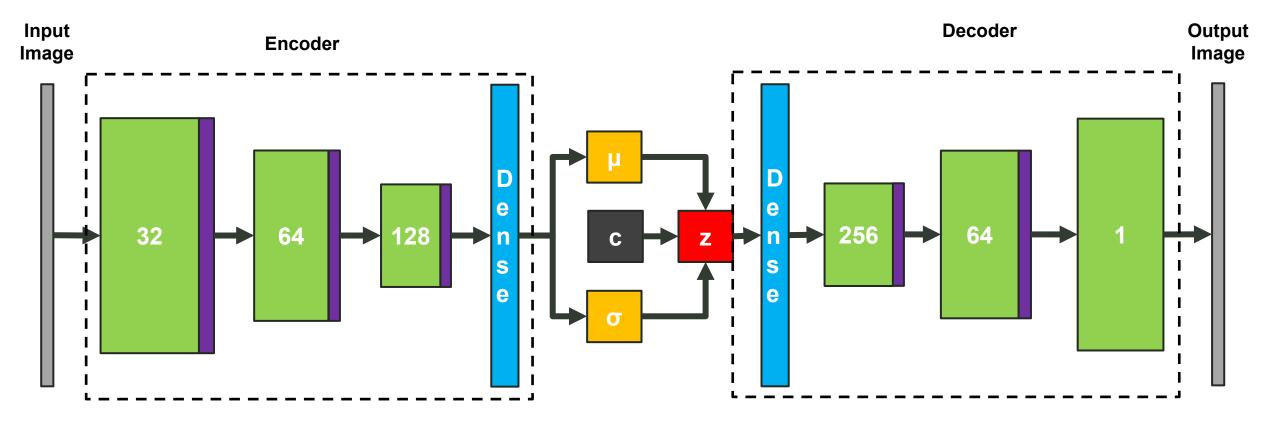
Onyx is a Cray XC40/50 system. It has 4,810 standard compute nodes, 4 largememory compute nodes, 32 GPU compute nodes, 32 Knights Landing (Phi) compute nodes, and 64 Machine Learning Accelerator (MLA) multi-GPGPU nodes (a total of 4,942 compute nodes or 217,128 compute cores). It is rated at 6.06 peak PFLOPS.

1st Layer Architecture

The anomaly detector



AUTOENCODER ARCHITECTURE



Convolution Layer

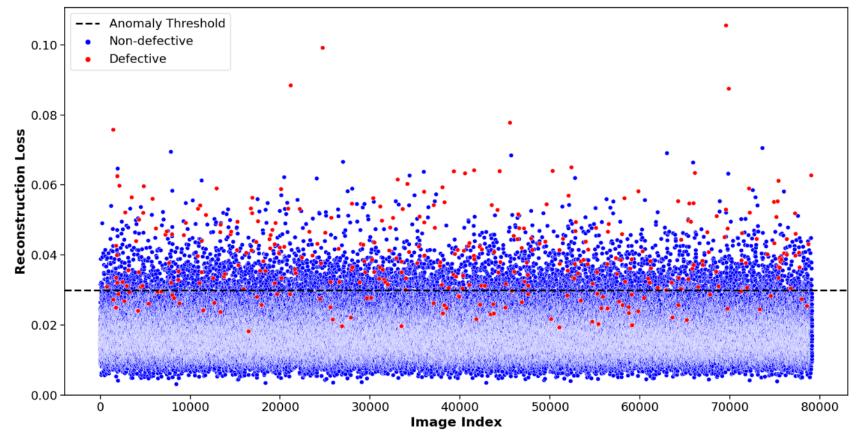
ReLu Activation

Gaussian Noise Sampling Layer

ANOMALY DETECTOR PREDICTIONS

Leverage 1st training to interrogate outliers from Non-defective image set

- Remove images with questionable class labels, e.g. images with alphabet soup
- Removals will tighten up learned distribution of normal image set
- Tighter normal image distribution makes setting anomaly threshold less subjective
- Effect will be decreased false positives



ANOMALY DETECTOR PATH FORWARD

- 1. Mask image to isolate munition
 - Noisy and distractive features occurring outside the munition ROI
- 2. Reclassify or remove normal images having questionable labels
 - Retrain the model
- 3. Reevaluate Autoencoder threshold

Minimized cross-entropy

			Predicted		
			Non-Defective	Defective	
	Actual	Non-defective	68847 (87.38%)	9947 (12.62%)	
		Defective	74 (21.2%)	275 (78.8%)	

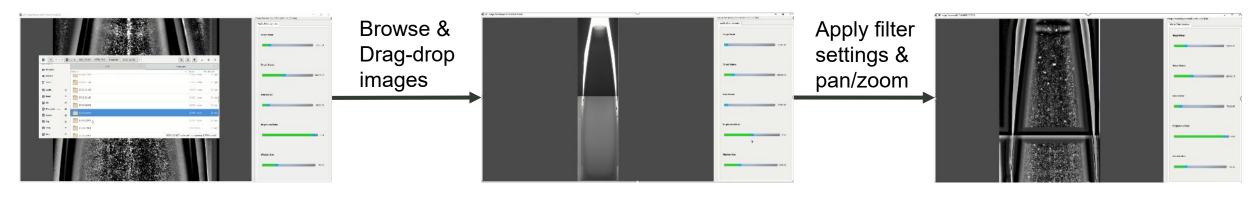
Unacceptable performance given the stakes

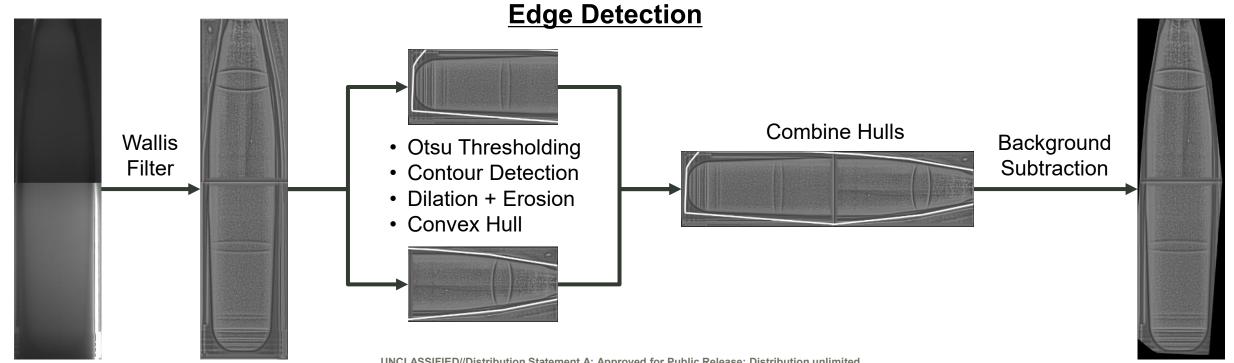
Deployable Capability

Tooling and capability integration in parallel

DEPLOYABLE TOOLS

Wallis Filter





Improving 1st Binary Classifier Layer

Addressing data quality and outliers

Developing 2nd Binary Classifier Layer

- Feature Extractor + MILSPEC
- Collaborating with United States Military Academy

Striving to Reduce Catastrophic Events

https://www.nbcnews.com/news/world/haunting-image-soldier-killed-blast-released-army-n754346