

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Cook-Off Mitigation for Medium Caliber Ammunition

Nausheen Al-Shehab, Kevin Miers, Jacek Foltynski

CCDC Armaments Center, FCDD-ACM-EW

Distribution Statement A: Approved for public release, distribution is unlimited

6 OCT 2022

OUTLINE

- Typical Medium Caliber Baseline CO Response
 - Bare warhead
 - Logistical Configuration
- Successful Demonstration of IM Mitigation Technology
- Logistical Response Challenges and Potential Issues with Medium Caliber Ammunition
- Burn Model
- 6F/h versus 27F/h
- Potential Solutions
- Successful Cook-Off Mitigation
- Conclusions

Medium caliber warheads reacts violently when subjected to Cookoff tests as defined in MIL-STD-2105C

M430A1 Baseline SCO (6F/h)1

XM25mm Baseline SCO (6F/h)²

XM25mm Baseline FCO²

30mm Baseline SCO

Notes:

IMEMTS, "TESTING OF AN IM UPGRADED M430A1 40 mm GRENADE," Las Vegas, NV, 14-17 May 2012
 IMEMTS, "IM Baseline Testing of the XM25 HEAB Cartridge," Rome, Italy 18-21 May 2015

TYPICAL BASELINE RESPONSE – PACKAGED

Logistical configuration of medium caliber cartridges react violently when subjected to Cook-off tests as defined in MIL-STD-2105C

40mm Baseline SCO (6F/h)

XM25mm Baseline SCO (6F/h)¹

30mm Live Warhead Baseline SCO (6F/h)

Notes:

1. IMEMTS, "IM Baseline Testing of the XM25 HEAB Cartridge," Rome, Italy 18-21 May 2015

SUCCESSFUL DEMONSTRATION OF INDIVIDUAL IM

Warhead Venting

- Successful SCO tests of bare projectiles with warhead venting melt rings (6F/h)
- Successful FCO tests of bare projectiles with warhead venting melt rings
- Successful packaged SCO Tests of 8 linked rounds with warhead venting

 – front and aft confinement
 - Live warheads with inert cartridge cases

Notes:

1. IMEMTS, "TESTING OF AN IM UPGRADED M430A1 40 mm GRENADE," Las Vegas, NV, 14-17 May 2012

SUCCESSFUL DEMONSTRATION OF INDIVIDUAL IM

Cartridge Case Venting

Vented and unvented cartridge cases were testes with inert warheads and plates simulating front and aft confinement

Unvented cases cause projectile to decrimp from cartridge case; significant damage to end plates

Vented case SCO (6F/h) Unvented case SCO (6F/h)

SUCCESSFUL DEMONSTRATION OF INDIVIDUAL IM

Packaging Venting

Vented Containers with modified 40mm Cartridges

- Simulated Warhead Venting Threads Removed and Fuze Just Set in Place. Allows Venting of HE.
- Simulated Cartridge Case Venting Base Plug Modified; 3 Kidney Shaped Holes Filled with Wax.

SCO (6F/h)

LOGISTICAL RESPONSE CHALLENGES

Violent response of single container SCO tests of combined warhead, cartridge case and packaging venting technologies

SCO 2

Potential Issues – Medium Caliber

- Multiple round per container (30 to 110)
 - heightened risk of at least one violent reaction
- Linked rounds versus unlinked rounds
- Round orientation: horizontal versus vertical
- Melted HDPE dunnage material coats rounds causing slumping and prevents release of venting mechanism

INTEGRATED COOK-OFF TEST

Testing conducted to identify cause/location of violent reaction in system level Cook-off Environment

Test Configuration	SCO	FCO	Notes:	Key:
Full Inert, Glass Container	Х		 Reactions shown in parenthesis () are assessed, and not based on formal system-level tests. Reactions shown in brackets [] are official assessments made by the Army IM Board. 	FCO = Fast Cook-off
Single Round, Live IM Cartridge Case 1		(∨)		SCO = Slow Cook-off
Single Round, Live IM Cartridge Case 2		(V)		BI = Bullet Impact
Full Inert Full Standard Container		X		FI = Fragment Impact
Bottom Laver Live - Warhead Only 1				SD = Sympathetic
Bottom Layer Live - Warhead Only 2		(V)*	3. * Considered no-test due to high wind conditions	SCJ = Schaped Charge Jet
Second from Bottom Live - Warhead Only		(V)	and resultant thermal profile	Type VI: No Reaction
Third from Bottom Live - Warhead Only		(V)	4. Unless otherwise noted, applicable tests were	Type V: Burn
Top Laver Live - Warhead Only		(V)	conducted with standard dunnage material	Type IV: Deflagration
All Live Cartridge Case Only 1		(V)	-	Type III: Explosion
All Live Cartridge Case Only 2		(V)		Type II: Partial Detonatio
Bottom Layer Live - Warhead Only - No Dunnage		(V)		Type II Detollation
Bottom Layer Live - Warhead Only - "wine-rack"		(V)	"Wine Rack" Test Cor	figuration
Bottom Layer Live - Warhead Only	(1/11)			
Second from Bottom Live - Warhead Only	(IV/V)			
Third from Bottom Live - Warhead Only	(IV/V)			
Top Layer Live - Warhead Only	(1)			
Bottom Layer Live - Warhead Only - "wine-rack"	(V)			
Bottom Layer Live - Warhead Only - No Dunnage	(111)			
Bottom Layer Live - Warhead Only - Mod Dunnage	(1)			
Top Layer Live - Warhead Only - "wine rack"	(11)		Contraction in the local data and the local data and the	
Top Layer Live - AUR - "wine rack"	(11)		Bottom Live Lave	r —

Dunnage potential cause of violence in bottom row

LIMITED 25MM PACKAGED SCO TEST SET UP

Purpose: To determine the temperature and severity of reaction of cartridges in the interior of the shipping container

Hardware:

- Six cartridges with live warheads + fuze, no propellant
- Standard container and dunnage
- Inert aluminum slugs in unoccupied positions in cartons

Test Setup:

- 8 Thermocouples (6 on cartridges, 1 in air, 1 between cartons)
- Temperature soaked with 6°F/hr ramp

Container in Oven

Aluminum Slug

Cartridge with Thermocouple

Thermocouple between Cartons

Top Tray

Bottom Tray

LIMITED 25MM PACKAGED SCO TEST RESULTS

Recovered hardware:

- 5 cartridge cases with Aft Warheads
- 1 damaged cartridge case, piece of Aft Warhead (far right)
- 5 Forward Warheads
- No HE

Damaged cartridge case and piece of Aft Warhead identified as Cartridge #1

 One Forward Warhead missing, likely from this cartridge Container deformed, bottom shows indents from the 3 bottom tray cartridges

 Bottom indents show no evidence of frags
 Two perforations in container below live cartridge 1

LIMITED 25MM PACKAGED SCO TEST RESULTS

- Each thermocouple shows a spike prior to terminal reaction
 - Previous testing and recovered hardware indicate each spike corresponds to the Aft Warhead deflagrating
- Cartridge 1 likely reacted violently
 - First to show temp spike
 - Recovered hardware shows this cartridge to have most damage →Aft warhead and cartridge case damaged

Distribution Statement C: Distribution authorized to U.S. Government Agencies and their Contractors, Administrative/Operational Use, March 2017. Other requests that the statement the Arpproxed for the Use and the statement of t

- Energetics burning/venting can be described as shown above
- Most medium caliber ammunition have pressed explosives "porouslike" burning and damage effects as well
- Burning products pressurize chamber and vent through nozzle
- The burning, venting, and gas buildup are all coupled
- This is exactly the situation in a solid propellant rocket motor

• Explosives: R~kP², large T dependence. Deconsolidative burn

PBXN-109 ANALYTIC BURN MODELING

Analytic Burn Modeling of PBXN-109

6 VERSUS 27F/H

• For single round testing:

- The melt ring temperature is adequately uniform at both rates and tracks with the warhead skin temperature
- At both 27F/h and 6 F/h the pre-ignition hotspot is expected to remain closer to the center of HE (for small munitions)
- Cartridge case venting required for large propellant charge

For packaged round configuration:

- Each round will see the same temperature history starting at different times (latency) – (E. Baker, private communications)
- Significant temperature gradients within container
- Venting works for individual rounds at either rate, unless interior rounds are significantly cooler when the outer ones ignite
- Clear vent path and sufficient vent areas required to keep pressures low once ignition occurs (slumping, deformation)
- Gun propellant reacts significantly earlier than HE starts as SCO, ends as FCO
- Exact steady packaging temperature gradient challenging to model

6F/HR RESULTS

UNCLASSIFIED

27F/HR RESULTS

POTENTIAL SOLUTIONS

- Effective warhead, cartridge case and container venting, as required
- Dimensionally stable dunnage that does not obstruct vent path
- Sufficiently conductive internal packaging to ensure venting features function
- Rudimentary mostly intractable modeling, need to test to success
- Couple mechanical solutions with less sensitive, higher performing energetic formulations for improved IM mitigation solutions

RECENT MEDIUM CALIBER VENTING

Internal View

Close-Up View

MEDIUM CALIBER VENTING INTERNAL VIEW

MEDIUM CALIBER VENTING CLOSE-UP VIEW

CONCLUSIONS

- Unique challenges to medium caliber cook-off mitigation uitilizing only mechanical solutions
 - Clear vent path and sufficient vent areas required to keep pressures low once ignition occurs (slumping, deformation)
 - Container heat management required to address potential large thermal gradients within the container
 - Need to actuate internal round vent features prior to outer rounds initiating
- Exact steady packaging temperature gradient challenging to model
- Need to couple mechanical solutions with less sensitive higher performing energetic materiel
- Encouraging recent results for 27F/h heating rate, however, need to be aware of large temperature gradients within containers