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• Objectives
• Problem Definition
• Modeling Framework
• Parameter Definition
• Benchmark example
• Full-scale system simulation examples

Introduction
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• Advance the use of digital engineering in the IM assessment & design process
• Need to move to point of true prediction of IM concepts to include materials and 

configurations
• Here highlight analysis of the slow cookoff scenario; fast cookoff, frag/bullet 

impact, shape charge and sympathetic reaction also being worked
– Fast cookoff requires thermal loading process discussed here + “flow” analysis

• Help drive better IM system level testing; currently performed as qual tests
• Multi-component energetics represent unique challenges; ingredients may have 

well known response but when combined “global” response differs

Objectives
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• IM scenarios have challenges of heat transfer, chemical reactions and fluid 
dynamics

• For slow cookoff primary response is a thermal decomposition so can be 
represented using heat transfer equations

• For fast cookoff, response includes quick gasification and flow of material so must 
additionally solve

• Definition of reaction rate parameters will be discussed

Governing Equations
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Heat Transfer Equations Flow Equations (2D Axisymmetric)
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Adaptive Mesh Refinement (AMR) Framework
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• Simulations shown here made with a Cartesian Adaptive Mesh code for 
Blast Explosions & Releases (CAMBER)

– Finite-volume, multi-material framework
– Variety of reaction models available

• Greatly increases efficiency, maintaining accuracy
• Adaptation to the solution – refinement in areas with gradients
• Refining to moving waves unique challenge – a method is used that defines 

location and expected movement of fronts

AMR Used for Blast Modeling 

AMR Definition of Object
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• Timescale of process is such that explicit time integration not practical 
due to stability requirement is fraction of a second

• Scenarios to be simulated can cover events on the order of several 
hours or days – implicit methods necessary

• Here an iterative solution method is used
• Leverages fact that AMR structure allows only 1 of 3 potential 

“neighboring” situations; (1) same, (2) 1/4th, (3) 4x
• Governing equation cast into general form

• Zero out CNBs based on nature of adaptation

𝑪𝑪𝑴𝑴𝑴𝑴𝑻𝑻𝑴𝑴𝑴𝑴 = �𝑪𝑪𝑵𝑵𝑵𝑵𝑻𝑻𝑵𝑵𝑵𝑵 + 𝑺𝑺𝑴𝑴𝑴𝑴

Example Adaptation
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Parameter Definition - Multi-step Finite Rate Model
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• Key phenomena is transformation & reactions in the energetic 
during heating

• Two approaches typically taken to address this process
• Studies[1] have shown response to heating can be modeled 

using a multi-material, multi-step Arrhenius type model
• Parameters derived & validated using ODTX data
• More complex the energetic, the more difficult to define 

modeling parameters
– Must work to make “global” characteristics consistent with 

known behavior of each component
– Evaluating when a “composite” vs “component” 

representation is needed

PBXN-109

PBXN-109 Kinetic Parameters
PBXN-109 Kinetic Scheme

[1] Yoh, et al,, UCRL-CONF-201173, Nov 25, 2003
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• Another common definition of energetic 
response uses Self-Accelerating 
Decomposition Temperature tests [2]

– Use DSC, TGA

• Single step used to represent the process 
but not a simple rate law

– Varying rate parameters replicates the 
endothermic / exothermic phases

• Max heating temperature was 500 °C, too 
low for an Al reaction Simulation of RDX & AP Response (Colored curve are current modeling.)

[3] Kim, et al, Thermochimica Acta, 678 (2019).

Rate Parameters for RDX & AP[3]

Note: Figures mislabeled in Ref [3][2] Roduit, et al, J. Therm. Anal. Calorim. 93 (2008)

Rate Parameters for PBX#2 (66% HMX, 25% Al)[3]
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• Thermal properties key to process; issue arises if 
no experimental information is available

• Multi-component energetics; unique challenge
• Density & heat capacity are volume dependent
• Conductivity is a surface property so depends on 

particle size of each component
– Originally addressed by Maxwell in 1904

– Currently working better representation
– Some approaches uses micro sims of define 

macro parameters[3]

RDX25 in Ref [1], PBX #3 in Ref [2]

PBX #2 in Ref [2]

Component % weight ρ (kg/m3) C (J/kg-K) k (W/m-K)

HMX 66 1,716 1,427 0.350
Al 25 2,700 904 205
AP 0 1,950 1,602 0.430
HTPB 9 930 2,900 0.167
Calculated 1,742 1,429 2.42*
Experimental 1,900 1,096 0.997

Component % weight ρ (kg/m3) C (J/kg-K) k (W/m-K)

RDX 25 1,858 1,256 0.167
Al 35 2,700 904 205
AP 25 1,950 1,602 0.430
HTPB 15 930 2,900 0.167
Calculated 1,806 1,466 0.74*
Experimental 1,820 1,080 0.20

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑘𝑘𝑒𝑒 + 2𝑘𝑘𝑚𝑚 + 2𝜙𝜙 𝑘𝑘𝑒𝑒 − 𝑘𝑘𝑚𝑚
𝑘𝑘𝑒𝑒 + 2𝑘𝑘𝑚𝑚 − 𝜙𝜙 𝑘𝑘𝑒𝑒 − 𝑘𝑘𝑚𝑚

� 𝑘𝑘𝑚𝑚

*Using Maxwell eqn.

[3] Rajoriya, et al, International Journal of Thermal Sciences, 127 (2018).

Example from Ref [3]
AP/Al Energetic

Keff (W/mK)

Calc. = 0.51
Exp. = 0.62
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Small-Scale Slow Cookoff Benchmark
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• Test item was the RDX25 fill with steel case [3]

• Heating load was 3.3 °C / hr after 7 hr at 108 °C
• Both RDX & AP reactions considered

– Heat rate causes RDX to respond before AP
– Temperature well below what is needed for Al 

to contribute
• Evaluating “composite” vs “component” 

representation

Test Configuration

RDX25 (20%RDX, 35% Al, 25% AP)



Approved for public release. Distribution unlimited.

UNCLASSIFIED
Full-Scale Analysis Example (PBXN-109 Fill)
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• Test involves engulfing item with heat and elevating load over time
• There is an “induction” process related to the endothermic process
• Implicit/AMR framework allows for efficient analysis

Change in Temperature & Composition Evolution of Mesh

Video
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Full-Scale Analysis Example (PBXN-109 Fill) – Still Images
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Full-Scale Analysis Example (PBXN-109 Fill)
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• Predicted “time to explosion” consistent with test data
• Response of the energetic, such as the induction 

phase, key to overall system response
• 3D modeling framework captures non-uniform 

response such as difference in front & rear fuze well
– Early reactions at one end can cause differential 

forces resulting in billet movement

Results consistent with test data

Location of Recording Probes
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Long Term Environmental Qual Test (RDX Fill)
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• Another slow process that involves 
heating and cooling

• Performed to meet MIL-STD-2105D & 
810G, DoD Test Method Standard, 
Hazard Assessment Tests for Non-
Nuclear Munitions

• Munition exposed to 28-day temperature 
cycle of hot & cold

• Example of full-scale munition test
• Note - response of internal fill slower than 

what is probably thought to happen
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Fast Cookoff Example
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• Heating process is modeled as in the slow cookoff scenario
• Response after ignition is modeled – requires solution of full set of governing equations
• Reaction model transitions to a pressure-dependent burn rate model[4]

• Solution captures the feedback process from confinement to the reaction rate

[4] Yoh, et al, UCRL-JRNL-207203, Oct 2044 Journal of Applied Physics

𝑽𝑽 = 𝒂𝒂𝑷𝑷𝒏𝒏
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• Tremendous potential for leveraging digital engineering in the IM design process
– Requires tools that capture key phenomena in weapon-scale scenarios
– Robust and efficient numerical approaches key to have tools that integrate into 

the design and evaluation process
• Scenarios range from slow cookoff to detonations - robust modeling tools needed

– Multi-material code with variety of reaction models addresses the phenomena
– AMR / Implicit approach has proven efficient & promotes integration with 

design process
• Challenges exist when addressing composite energetics

– Working theoretical and experimental processes to address this issue
– Potential for additional useful information collection during qual tests

Conclusions
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