

Integrated Solutions for Systems

COOKOFF ANALYSIS USING AN IMPLICIT AMR APPROACH

J. Keith Clutter, PhD

Integrated Solutions for Systems (IS4S), Inc., 100 Pamela Ann Dr Fort Walton Beach FL, 32547, 210.862.1481

keith.clutter@is4s.com

Introduction

- Objectives
- Problem Definition
- Modeling Framework
- Parameter Definition
- Benchmark example
- Full-scale system simulation examples

Objectives

- Advance the use of digital engineering in the IM assessment & design process
- Need to move to point of true <u>pre</u>diction of IM concepts to include materials and configurations
- Here highlight analysis of the slow cookoff scenario; fast cookoff, frag/bullet impact, shape charge and sympathetic reaction also being worked
 - Fast cookoff requires thermal loading process discussed here + "flow" analysis
- Help drive better IM system level testing; currently performed as qual tests
- Multi-component energetics represent unique challenges; ingredients may have well known response but when combined "global" response differs

- IM scenarios have challenges of heat transfer, chemical reactions and fluid dynamics
- For slow cookoff primary response is a thermal decomposition so can be represented using heat transfer equations
- For fast cookoff, response includes quick gasification and flow of material so must additionally solve
- Definition of reaction rate parameters will be discussed

Heat Transfer Equations

Flow Equations (2D Axisymmetric)

Adaptive Mesh Refinement (AMR) Framework

- Simulations shown here made with a Cartesian Adaptive Mesh code for Blast Explosions & Releases (CAMBER)
 - Finite-volume, multi-material framework
 - Variety of reaction models available
- Greatly increases efficiency, maintaining accuracy
- Adaptation to the solution refinement in areas with gradients
- Refining to moving waves unique challenge a method is used that defines location and expected movement of fronts

AMR Used for Blast Modeling

AMR Definition of Object

Implicit Approach

- Timescale of process is such that explicit time integration not practical due to stability requirement is fraction of a second
- Scenarios to be simulated can cover events on the order of several hours or days – implicit methods necessary
- Here an iterative solution method is used
- Leverages fact that AMR structure allows only 1 of 3 potential "neighboring" situations; (1) same, (2) 1/4th, (3) 4x
- Governing equation cast into general form

$$C_{ME}T_{ME}=\sum C_{NB}T_{NB}+S_{ME}$$

- Zero out C_{NB} s based on nature of adaptation

Parameter Definition - Multi-step Finite Rate Model

- Key phenomena is transformation & reactions in the energetic during heating
- Two approaches typically taken to address this process
- Studies^[1] have shown response to heating can be modeled using a multi-material, multi-step Arrhenius type model
- Parameters derived & validated using ODTX data
- More complex the energetic, the more difficult to define modeling parameters
 - Must work to make "global" characteristics consistent with known behavior of each component
 - Evaluating when a "composite" vs "component" representation is needed

PBXN-109 Kinetic Scheme			
$A \to B$ $B \to C + Al$ $C \to D$	$\begin{aligned} r_1 &= Z_1 exp(-Ea_1/RT)\rho_A\\ r_2 &= Z_2 exp(-Ea_2/RT)\rho_B\\ r_3 &= Z_3 exp(-Ea_3/RT)\rho_c^2 \end{aligned}$		

PBXN-109 Kinetic Parameters				
Reaction step	$\ln Z_k$	$\begin{array}{c} E_k \\ (\text{kJ/g mole K}) \end{array}$	$q_k \ (J/g)$	
$A \rightarrow B$	43.84 s ⁻¹	194.7	268.0 (endothermic)	
$B \rightarrow \overline{C}$	39.04 s ⁻¹	182.5	-803.9 (exothermic)	
$C \rightarrow D$	$32.84 \text{ cm}^3/\text{sg}$	141.1	-4241.2 (exothermic)	

Parameter Definition - Single-step Finite Rate Model

- Another common definition of energetic response uses Self-Accelerating Decomposition Temperature tests ^[2]
 - Use DSC, TGA
- Single step used to represent the process but not a simple rate law
 - Varying rate parameters replicates the endothermic / exothermic phases
- Max heating temperature was 500 °C, too low for an AI reaction

Simulation of RDX & AP Response (Colored curve are current modeling.)

Note: Figures mislabeled in Ref [3]

Approved for public release. Distribution unlimited.

Rate Parameters for PBX#2 (66% HMX, 25% Al)^[3]

[2] Roduit, et al, J. Therm. Anal. Calorim. 93 (2008)

[3] Kim, et al, *Thermochimica Acta*, 678 (2019).

8

Thermal Properties Definition

- Thermal properties key to process; issue arises if no experimental information is available
- Multi-component energetics; unique challenge
- Density & heat capacity are volume dependent
- Conductivity is a surface property so depends on particle size of each component
 - Originally addressed by Maxwell in 1904

$$k_{eff} = \frac{k_f + 2k_m + 2\phi(k_f - k_m)}{k_f + 2k_m - \phi(k_f - k_m)} \cdot k_m$$

- Currently working better representation
- Some approaches uses micro sims of define macro parameters^[3]

RDX25 in Ref [1], PBX #3 in Ref [2]

Component	% weight	ρ (kg/m ³)	C (J/kg-K)	k (W/m-K)
RDX	25	1,858	1,256	0.167
Al	35	2,700	904	205
AP	25	1,950	1,602	0.430
HTPB	15	930	2,900	0.167
Calculated		1,806	1,466	0.74*
Experimental		1,820	1,080	0.20

PBX #2 in Ref [2]

Component	% weight	ρ (kg/m ³)	C (J/kg-K)	k (W/m-K)
HMX	66	1,716	1,427	0.350
Al	25	2,700	904	205
AP	0	1,950	1,602	0.430
HTPB	9	930	2,900	0.167
Calculated		1,742	1,429	2.42*
Experimental		1,900	1,096	0.997

*Using Maxwell eqn.

[3] Rajoriya, et al, International Journal of Thermal Sciences, 127 (2018).

Small-Scale Slow Cookoff Benchmark

- Test item was the RDX25 fill with steel case ^[3]
- Heating load was 3.3 °C / hr after 7 hr at 108 °C
- Both RDX & AP reactions considered
 - Heat rate causes RDX to respond before AP
 - Temperature well below what is needed for Al to contribute
- Evaluating "composite" vs "component" representation

Test Configuration

Approved for public release. Distribution unlimited.

RDX25 (20%RDX, 35% AI, 25% AP)

Full-Scale Analysis Example (PBXN-109 Fill)

IS S UNCLASSIFIED

- Test involves engulfing item with heat and elevating load over time
- There is an "induction" process related to the endothermic process
- Implicit/AMR framework allows for efficient analysis

Evolution of Mesh

Change in Temperature & Composition

Full-Scale Analysis Example (PBXN-109 Fill) – Still Images

T red: T > 1000K		T red:T > 1000K		T red: T > 1000K	
A red: conc > 9	C red: conc > .9	A (red: conc >.9	C md: conc > .9	A red: conc > .9	C red: conc > .9
B red: conc > .9	D red: conc> 9	B red: conc >.9	C. <sno: .9<="" th=""><th>B red: conc > .9</th><th>D red: conc> .9</th></sno:>	B red: conc > .9	D red: conc> .9
		Sec			

Full-Scale Analysis Example (PBXN-109 Fill)

- Predicted "time to explosion" consistent with test data
- Response of the energetic, such as the induction phase, key to overall system response
- 3D modeling framework captures non-uniform
 response such as <u>difference in front & rear fuze well</u>
 - Early reactions at one end can cause differential forces resulting in billet movement

Location of Recording Probes

Results consistent with test data

Long Term Environmental Qual Test (RDX Fill)

- Another slow process that involves heating and cooling
- Performed to meet MIL-STD-2105D & 810G, DoD Test Method Standard, Hazard Assessment Tests for Non-Nuclear Munitions
- Munition exposed to 28-day temperature cycle of hot & cold
- Example of full-scale munition test
- Note response of internal fill slower than what is probably thought to happen

Fast Cookoff Example

- Heating process is modeled as in the slow cookoff scenario
- Response after ignition is modeled requires solution of full set of governing equations
- Reaction model transitions to a pressure-dependent burn rate model^[4]

 $V = aP^n$

• Solution captures the feedback process from confinement to the reaction rate

[4] Yoh, et al, UCRL-JRNL-207203, Oct 2044 Journal of Applied Physics

Conclusions

- UNCLASSIFIED
- Tremendous potential for leveraging digital engineering in the IM design process
 - Requires tools that capture key phenomena in weapon-scale scenarios
 - Robust and efficient numerical approaches key to have tools that integrate into the design and evaluation process
- Scenarios range from slow cookoff to detonations robust modeling tools needed
 - Multi-material code with variety of reaction models addresses the phenomena
 - AMR / Implicit approach has proven efficient & promotes integration with design process
- Challenges exist when addressing composite energetics
 - Working theoretical and experimental processes to address this issue
 - Potential for additional useful information collection during qual tests