

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Air Drag Measurements for the NATO Insensitive Munitions Fragment

Kevin T. Miers, Nausheen M. Al-Shehab

2022 Insensitive Munitions and Energetic Materials Technology Symposium

Indianapolis, IN, USA

Presented by Kevin T. Miers, Mechanical Engineer US Army DEVCOM AC Detonation Physics and Experimental Research Branch Phone: 973-724-1180 Email: kevin.t.miers.civ@army.mil

Distribution Statement A: Approved for public release. Distribution is unlimited. UNCLASSIFIED

18 OCT 2022

- Background
- Theory
- Experimental Methodology
- Results and Discussion
- Summary and Conclusions; Future Work

BACKGROUND

- Test article placed as close to FI gun as is practical
- Larger test items may need to be moved further down the shot line
- 2530 m/s challenging for powder guns, barrel wear
- Accounting for air drag should provide increased confidence in impact velocity
- In this work we have performed a series of drag coefficient measurements at test velocities of interest

$$m\frac{dV}{dt} = -\frac{1}{2}\rho V^2 SC_D \qquad s = \frac{1}{l} = \int_{t_0}^t V dt \qquad F=ma$$

$$\frac{d(\ln V)}{ds} = \frac{1}{V}\frac{dV}{ds} = -\left(\frac{\rho Sl}{2m}\right)C_D \equiv -C_D^* \qquad \text{F=ma (dimensionless length)}$$

$$t = t_0 + \frac{l(e^{C_D^*s} - 1)}{V_0 C_D^*}$$

$$\approx t_0 + \left(\frac{l}{V_0}\right)s + \left(\frac{lC_D^*}{2V_0}\right)s^2 + \cdots$$

$$\approx t_0 + \left(\frac{1}{V_0}\right) x + \left(\frac{\rho S C_D}{4mV_0}\right) x^2 + \cdots$$

Solution for time of arrival (dimensionless length)

Solution for time of arrival (Taylor series expansion)

$$t = t_0 + a_1 x + a_2 x^2 + a_3 x^3 \text{ where} \qquad \begin{array}{l} \text{Solution for time} \\ \text{of arrival (actual} \\ a_1 = \frac{1}{V_0} \quad a_2 = \frac{\rho S C_D}{4mV_0} \rightarrow \quad C_D = \left(\frac{4m}{\rho S}\right) \left(\frac{a_2}{a_1}\right) \qquad \begin{array}{l} \text{length} \end{array}$$

- Perform cubic least squares fit to TOA data with x=0, V=V0, t=t0 at range midpoint
- Linear term determines velocity at range midpoint (x=0)
- Quadratic, second order term contains drag coefficient
- Cubic, third order term absorbs Mach number variation

How long a range length needed to accurately measure C_D ?

$$d_{t} = \frac{l(e^{C_{D}^{*}s} - 1)}{V_{0}C_{D}^{*}} - \frac{ls}{V_{0}} \approx \frac{lC_{D}^{*}s^{2}}{2V_{0}} = \frac{\rho Sl^{2}}{16mV_{0}}C_{D}L^{2}$$

Maximum time decrement – difference in TOA at range endpoints, assuming drag vs. no drag

$$e_t/d_t$$

TOA measurement error e_t should be small compared to d_t for accurate drag measurements!

d_t increases with square of total range length!

$$d_{t} = \frac{l(e^{C_{D}^{*}s} - 1)}{V_{0}C_{D}^{*}} - \frac{ls}{V_{0}} \approx \frac{lC_{D}^{*}s^{2}}{2V_{0}} = \frac{\rho Sl^{2}}{16mV_{0}}C_{D}L^{2}$$

THEORY (CONT'D)

rho	1.225	Air Density, kg/m^3
len	0.0143	Fragment Diameter, m
S	0.000160606	Fragment Presented Area, m^2
m	0.0186	Fragment Mass, kg
V0	2530	Fragment Velocity, m/s
CD	1.4	Assumed Drag Coefficient, dimensionless
Lft	75	Assumed Total Range Length, ft
Lm	22.86	Assumed Total Range Length, m
Lcal	1598.601399	Assumed Total Range Length, calibers
dt	191.1723526	Maximum Time Decrement, us
terr	1	Timing Error, us
xerr in	1	Spacing error, in
xerr m	0.0254	Spacing error, m
xeq	10.03952569	Spacing Equivalent Timing Error, us
teq	10.08920592	Total Equivalent Timing Error, us
toterr	5.28	Anticipated Measured Drag Error, %

Long flight path needed so that detected deceleration not overwhelmed by measurement error!

THEORY (CONT'D)

How many timing stations do you need assuming uniform known measurement error?

$$e_i^2 = \left(\frac{\partial a_i}{\partial t_1}e_{t1}\right)^2 + \left(\frac{\partial a_i}{\partial t_2}e_{t2}\right)^2 + \dots + \left(\frac{\partial a_i}{\partial t_n}e_{tn}\right)^2$$

Can explicitly calculate error in each least squares fit coefficient as function of number and spacing of timing stations!

$$\left(\frac{e_i}{e_t}\right)^2 = \sum_{j=1}^n \left(\frac{\partial a_i}{\partial t_j}\right)^2$$

- Long story short, optimal spacing is half the stations at range midpoint, 1/4 of them at each range endpoint
 - We used 6 equally spaced TOA gauges over ~75ft

DRAG COEFFICIENT MEASUREMENT TESTING

	Test 1 (RT21463)		Test 2 (RT21464)		Test 3 (RT21465)		Test 4 (RT21466)		Test 5 (RT21467)		Test 6 (RT21468)	
	TOA (ms)	X (in)										
GUN-TOA1	25.4180	120.0000	24.7467	120.2500	22.6041	103.5000	21.9282	104.0000	23.0228	104.0000	22.0304	104.0000
TOA1-TOA2	26.6044	120.0000	25.9591	119.2500	24.4072	179.3750	23.6915	179.3750	24.7955	180.3125	23.8304	180.8750
TOA2-TOA3	27.8177	120.0000	27.1960	119.2500	26.2653	180.1250	25.5208	178.8750	26.6321	178.8750	25.6687	178.2500
TOA3-TOA4	29.0660	120.0000	28.4682	120.8750	28.1943	179.1250	27.4107	179.0000	28.5503	179.1250	27.5918	178.9375
TOA4-TOA5	30.3597	120.0000	29.7834	120.8750	30.2280	181.1875	29.4085	181.1875	30.5653	181.1875	29.6188	181.3125
TOA5-TOA6	31.6837	120.0000	31.1328	120.0000	32.3423	178.8125	31.4505	178.8125	32.6443	178.5625	31.7180	178.5000

DRAG COEFFICIENT MEASUREMENT TESTING

DRAG COEFFICIENT MEASUREMENT TESTING

TOA gauges a little heavy...

DRAG COEFFICIENT CALCULATION

	Test 1 (RT21463) Te		Test 2 (F	est 2 (RT21464) Tes		Test 3 (RT21465)		Test 4 (RT21466)		Test 5 (RT21467)		T21468)
	TOA (s)	x(m)	TOA (s)	x(m)	TOA (s)	x(m)	TOA (s)	x(m)	TOA (s)	x(m)	TOA (s)	x(m)
TOA1	0.0254180	-7.6200	0.0247467	-7.6099	0.0226041	-11.4128	0.0219282	-11.3900	0.0230228	-11.4104	0.0220304	-11.4102
TOA2	0.0266044	-4.5720	0.0259591	-4.5810	0.0244072	-6.8567	0.0236915	-6.8339	0.0247955	-6.8305	0.0238304	-6.8159
TOA3	0.0278177	-1.5240	0.0271960	-1.5520	0.0262653	-2.2815	0.0255208	-2.2905	0.0266321	-2.2871	0.0256687	-2.2884
TOA4	0.0290660	1.5240	0.0284682	1.5182	0.0281943	2.2683	0.0274107	2.2561	0.0285503	2.2627	0.0275918	2.2566
TOA5	0.0303597	4.5720	0.0297834	4.5884	0.0302280	6.8704	0.0294085	6.8583	0.0305653	6.8649	0.0296188	6.8620
TOA6	0.0316837	7.6200	0.0311328	7.6364	0.0323423	11.4123	0.0314505	11.4001	0.0326443	11.4004	0.0317180	11.3959

	a3	a2	a1	a0	V0	CD	dV/dx
Test 1	1.5761E-08	1.9406E-06	4.1023E-04	2.8439E-02	2437.6	1.79	23.062002
Test 2	5.4435E-08	1.7083E-06	4.1568E-04	2.7835E-02	2405.7	1.55	19.77285
Test 3	2.9361E-08	1.9223E-06	4.2280E-04	2.7223E-02	2365.2	1.72	21.507083
Test 4	6.6191E-09	1.7185E-06	4.1697E-04	2.6464E-02	2398.2	1.56	19.76768
Test 5	5.7707E-09	1.9215E-06	4.2105E-04	2.7585E-02	2375.0	1.73	21.677254
Test 6	1.8829E-08	1.9283E-06	4.2235E-04	2.6626E-02	2367.7	1.73	21.620883

Seems high!

DRAG COEFFICIENT CALCULATION

	TOA Gauges	
	15in x 15in	
	657 grains	
	~0.010" thick	
lb	0.093857143	TOA mass, lb
kg	0.042572849	TOA mass, kg
S	0.000160606	Fragment Presented Area, m^2
m1	0.0186	Fragment Mass, kg
v1	2367.7	Measured Midpoint Velocity, m/s
A	0.145161	TOA Total Area, m^2
m2	4.71026E-05	Mass of Punched Out TOA, kg
v2	2361.71919	Residual Velocity, m/s
dv	5.980810401	Velocity Reduction, m/s
dVdx	18.907529	m/s per m
dx	0.316318986	Equivalent Distance, m
dxin	12.45351011	Equivalent Distance, in
dt	0.133597578	Equivalent Time, ms

Velocity drop equivalent to ~12" of travel!

DRAG COEFFICIENT CALCULATION

DRAG COEFFICIENT CALCULATION

	dtms	dxin	dtms	dxin	dtms	dxin	dtms	dxin	dtms	dxin	dtms	dxin
	0.1342937	12.887973	0.1626238	15.402528	0.134371	12.5124	0.1485344	14.02423	0.1332225	12.45684	0.1335976	12.45351
	Test 1 (RT21463)		Test 2 (RT21464)		Test 3 (RT21465)		Test 4 (RT21466)		Test 5 (RT21467)		Test 6 (RT21468)	
	TOA (ms)	X (in)	TOA (ms)	X (in)	TOA (ms)	X (in)	TOA (ms)	X (in)	TOA (ms)	X (in)	TOA (ms)	X (in)
GUN-TOA1	25.4180	120.0000	24.7467	120.2500	22.6041	103.5000	21.9282	104.0000	23.0228	104.0000	22.0304	104.0000
TOA1-TOA2	26.7387	132.8880	26.1217	134.6525	24.5416	191.8874	23.8400	193.3992	24.9287	192.7693	23.9640	193.3285
TOA2-TOA3	28.0863	132.8880	27.5212	134.6525	26.5340	192.6374	25.8179	192.8992	26.8985	191.3318	25.9359	190.7035
TOA3-TOA4	29.4689	132.8880	28.9561	136.2775	28.5974	191.6374	27.8563	193.0242	28.9500	191.5818	27.9926	191.3910
TOA4-TOA5	30.8969	132.8880	30.4339	136.2775	30.7655	193.6999	30.0026	195.2117	31.0982	193.6443	30.1532	193.7660
TOA5-TOA6	32.3552	132.8880	31.9459	135.4025	33.0142	191.3249	32.1932	192.8367	33.3104	191.0193	32.3860	190.9535

	a3	a2	a1	a0	V0	CD	dV/dx
Test 1	1.1606E-08	1.5824E-06	4.1023E-04	2.8775E-02	2437.6	1.46	18.805598
Test 2	3.7964E-08	1.3419E-06	4.1568E-04	2.8241E-02	2405.7	1.22	15.532698
Test 3	2.3976E-08	1.6802E-06	4.2280E-04	2.7559E-02	2365.2	1.50	18.79808
Test 4	5.2756E-09	1.4784E-06	4.1698E-04	2.6836E-02	2398.2	1.34	17.005553
Test 5	4.6791E-09	1.6804E-06	4.2106E-04	2.7918E-02	2375.0	1.51	18.956255
Test 6	1.5344E-08	1.6863E-06	4.2235E-04	2.6960E-02	2367.7	1.51	18.906947

Iterative procedure corrects for velocity drops across thick TOA gauges – C_D appears to be 1.2-1.5

RESULTS AND DISCUSSION

Spherical fragment expected C_D~0.9

Cube shaped fragment C_D expected to be 1.1-1.65

- 6 drag coefficient measurements performed for NATO IM fragment at approximately 2530 m/s
- ~80ft (~25m) range length with 6 TOA gauges
- Drag coefficient measured to be 1.22-1.51 when corrected for TOA gauge thickness
- Looks to be about what we expected; agrees with Dunn and Porter too
- Possible sources of error: TOA spacing error, trajectory curvature, fragment yawing motion, deformation from TOA gauge impacts
- Future work: perform measurements with rifled gun, thinnest possible TOA gauges, and more optimized timing station distribution

[1] Murphy, C. H. "Free Flight Motion of Symmetric Missiles". BRL-R-1216, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, July 1963.