

Defense Space Modernization Roadmap

Leveraging Industry, Commercial, Government, and International

DISTRIBUTION A. Approved for public release: **distribution** unlimited.

Lindsay Millard, PhD

Principal Director, Space

Office of the Under Secretary of Defense for Research and Engineering

Diversify, Develop, & Demonstrate to

Deter,
Deescalate, &
Dominate

https://www.CTO.mil

Technology from the Earth to the Moon and Beyond

Autonomous navigation, autonomous systems capable of operating and taking advantage of multi-body environments

Commoditized busses with high power generation, energy storage, power management and adaptable payloads

CIS-LUNAR ~1.3s

Hardening and Resiliency to space weather with high background radiation

Intelligent, low swap, Local and wide volume search, detection, tracking, ID, and state prediction

High bandwidth, secure comm, PNT, Assured C3

Standards developed and used by international partners

Facilities that can simulate space, digital engineering, and support rapid assessments

Launch capabilities and opportunities enabling joint operations and reconstitution

Cis-lunar regime and operations to drive technology improvements that flow to all orbital regimes

DISTRIBUTION A. Approved for public release: **distribution** unlimited.

Roadmap Process

Accelerate existing investments, push technologies to the warfighter, and expand opportunities for deterrence, de-escalation, and dominance

Space Investment Roadmap

Disagregation

buses and transport systems

Example: Space Domain Awareness

Space Domain Awareness: The capability to monitor, track and characterize an expansive, crowded, and dynamic environment. This includes both long-range wide volume situation awareness and short-time scale local tracking and prediction.

Technology Pushes		Local and Wide Volume Sensors	On-Board processing	Sustained High Power	Exotic Orbits	PNT	Comms	AI/ML algorithms for object, ID, control, and senso processing
Investments MID NEAR	m la	nanufacturable orge format arrays	Rad hard processors*COTS based	Advanced solar and nuclear*	Modeling and facilities for simulations	> Alt Ranging	Efficient radiators, apertures, and transceivers	
	sp	ncrease maturity of pectrum and payaveform agility	processorsSecure cloud processing*	Energy StorageThermal	ESPA class to large satellites	ers, gyros,	Fine PointingData backhaul	Search, detection and trackingID and Event predictions
		ine grained target cquisition	Diversified tip& cue*Federated	management Power Management	Autonomous orbit maneuvering	On orbit predictions	Increase maturity of spectrum and waveform	Sensor fusionComputational architecturesSensor fusion
FAR	> In	ntelligent Sensors	computing			Autonomous guidance and navigation	0 /	