Practical Software and Systems Measurement (PSM) Digital Engineering Measurement Framework

> Version 1.0c June 21, 2022

A collaboration among industry, government and academia

Digital Engineering Measurement Framework

Developed and Published by Members of:

Practical Software & Systems Measurement Systems Engineering Research Center

Aerospace Industries Association

National Defense Industrial Association

International Council on

Systems Engineering

The Aerospace Corporation *AEROSPACE*

Digital Engineering Measurement Framework - Project Overview and Timeline

<u>2020</u>

AIA EMC Project Plan

- Refined list of DE metrics serving as Key Performance Indicators for program execution, and model health
- Detailed descriptions of each metric, traceable to SE metrics, quality, & requirements volatility

Established collaborative WG (9/14/20) (PSM, NDIA, INCOSE, AIA, SERC, Aerospace, OUSD R&E, ...)

Objectives

- Define industry consensus measurement framework for DE, MBSE
- Align measures with business information needs for project execution and organizational performance improvement.

Leverage partner resources and assets

- Practical Software and Systems Measurement (PSM)
 <u>Continuous Iterative Development Measurement Framework</u>
- <u>SERC / INCOSE / NDIA MBSE Maturity Survey</u>
- SERC DE metrics research (<u>SERC-2020-SR-003</u>, <u>SERC-2020-TR-002</u>)
- <u>Systems Engineering Leading Indicators Guide</u>
- <u>DoD Digital Engineering Strategy</u>

2021

Follow PSM process to define DE measurement framework

 Aligned with ISO/IEC/IEEE 15939 measurement process standard

Team product development

- Front matter (concepts, terms, ...)
- Information Needs (ICM Table)
- Measurement specifications

<u>2022</u>

Initial framework draft for review (Jan 2022) V1.0 Publication release (May 2022)

Initial Measurement Specifications

- Architecture Completeness and Volatility
- Model Traceability
- Product Size
- DE Anomalies
- Adaptability and Rework
- Product Automation
- Deployment Lead Time
- Runtime Performance

http://www.psmsc.com/DEMeasurement.asp

Lack of effective DE/MBSE measures has been an inhibitor to digital transformation Substantiated by DoD SERC research

Benchmarking the Benefits and Current Maturity of Model-Based Systems Engineering across the Enterprise (SERC-2020-SR-001)

Category	Question title	SERC MBSE Questionnaire	Survey	SA	Α	D	SD	Chart	Calculat
*	т.	· · · · · · · · · · · · · · · · · · ·	Scol 🔨	-	Ψ.	-	*	Ψ.	ed Scc 🍸
	11. Modeling provides								
	measurable	Modeling activities in our organization provide							
Model Metrics	improvements	measurable improvements within and across projects.	30	18	83	50	19		30
Pioder Metrics	12. Have consistent	We have consistent metrics across our							
	metrics across	program(s)/enterprise that include our modeling							
	enterprise	activities.	-153	8	33	90	40		-153

https://sercuarc.org/results-of-the-serc-incose-ndia-mbse-maturity-survey-are-in/

Summary Report Task Order WRT-1001: Digital Engineering Metrics Supporting Technical Report (<u>SERC-2020-SR-003</u>)

Task Order WRT-1001: Digital Engineering Metrics Technical Report (SERC-2020-TR-002)

Success Measures and Benefits of Digital Engineering Transformation Research from DoD SERC and Virginia Tech helped inform the DE Measurement Framework

Summary DE Success Measures Framework		Primary Benefits	Description	Secondary Benefits and Measures		
An enduring, authoritative	An enduring, Use technological Infrastructure		Higher level support for automation	Use of tools and methods that automate previously manual tasks and decisions	8.6 Product Automation8.7 Deployment Lead Time	
inform enterprise and program decision making inform enterprise source of truth is used over the lifecycle iffecycle iffecycle		and workforce engineering across the lifecycle		Moving tasks into earlier developmental phases that would have required effort in later phases	8.4 DE Anomalies8.5 Adaptability and Rework8.7 Deployment Lead Time	
Quality:Knowledge Transfer:• Reduce Errors/Defects• Better access to information• Improve System Quality• Better communication/ info sharing		e Transfer: ss to	Reusability	Reusing existing data, models, and knowledge in new development	8.4 DE Anomalies8.5 Adaptability and Rework8.7 Deployment Lead Time	
		nunication/	Increased Traceability	Formally linking requirements, design, test, etc. via models	8.7 Deployment Lead Time 8.8 Runtime Performance	
Velocity/Agility:	Collaboration User Experience:	Adoption:	Strengthened Testing	Using data and models to increase test coverage in any phase	8.1 Architecture Completeness and Volatility8.2 Model Traceability8.3 Product Size	
 More Reuse Improve Consistency Increase Efficiency Support Integration Reduce Time Manage Complexity Improved System Understanding Automation Reduce Time Manage Complexity Improved System Understanding Automation Resources Resources 		ethods/Processes les/Skills aining/Tools adership support	Better Accessibility of Information (ASoT)	Leveraging an Authoritative Source of Truth (ASoT) to increase access to digital data and models to increase the involvement of stakeholders in program decisions	8.7 Deployment Lead Time8.8 Runtime Performance	
		Higher Level of Support for Integration	Using data and models to support integration of information and to support system integration tasks	8.6 Product Automation 8.2 Model Traceability		
Systems Engineering Research Center		5	Multiple Model Viewpoints	Presentation of data and models in the language and context of those that need access	8.1 Architecture Completeness and Volatility8.7 Deployment Lead Time	

PSM measures are derived from business information needs

Based on objectives and issues from the project or enterprise levels

- *Objective* a project goal or requirement
- Issue an area of concern that could impact the achievement of an objective, including risks, problems, and lack of information

See Framework for more information

Measures should provide insight into project or enterprise information needs to support decision-making

PSM Practical Software and Systems Measurement, www.psmsc.com

DE Measurement Framework v1.0

DE Measurement Framework ICM Table (Excerpt)

Table 7-2: Information Categories, Measurable Concepts, and Measures

Information Categories	Measurable Concepts	Project Information Needs	Enterprise Information Needs	Potential Measures	Notes (Guiding Objectives)
Schedule and Progress	Architectural Completeness	How complete is the architecture? Does the architecture account for all required functions? Is the architecture sufficiently complete to proceed with design at acceptable risk?	What is the amount of schedule and design risk for each project? What is the architecture progress across projects?	Architecture Completeness and Volatility *	
Schedule and Progress	Model Coverage	What is the extent of traceability across digital model elements? What traceability gaps exist? What is our progress in completing the digital model?	What is the extent of model traceability for a set of projects? What is the modeling coverage and progress of the digital engineering capability across projects? What is the current upper limit of the digital engineering capability?	Model Traceability * Model Coverage (modeled elements)	Measurement is against only the digital model elements. Model elements are created to fulfill the functions and interfaces allocated during the architecture and design phases.
Size and Stability	Functional Size and Stability	What is the size and scope for the DE project or product? How much work must be done? How many functions and interfaces have been identified in the system architecture or design? How much is that changing? How does DE product size relate to estimates and measures of cost, schedule, productivity, or performance?	Is the current project similar in size and scope to historical projects? Is the work scope changing? Is the schedule and effort sufficient to address changes? How does DE product size relate to estimates and measures of cost, schedule, productivity, or performance?	Product Size * (Model Elements) Architecture Completeness and Volatility * Functions Identified Functional Change Requests	In development, product size can be determined by a count of model elements. Function Volatility includes the aspects of continuing to identify new functions and/or having the functional allocation continue to change. In maintenance, change requests are often used as a measure of work scope.
May 2022			Version: v1.0		26

Version: v1.0

Example Measurement Information Model – Anomalies

Digital engineering measures and indicators are specified in a structured template aligned with the PSM Measurement Information Model

DE Measurement Framework v1.0

Example Measurement Specification (Excerpts)

MODEL TRACEABILITY 8.2

		Measure Introduction			Indicator Specification				
Description	Description	The usefulness and among model elem architectural, desig consistent. Gaps in further analysis or r when there is no im traceability measur relationships shall t might be applied to completeness alway Traceability reports indicators in this sp across the developr Traceabilit at each lev Traceabilit implement Allocation Effectiven Traceabilit	quality of a digital model depends on the completeness and integrity of the relation ents. Traceability between elements, such as requirements allocation and flow down a, and implementation components, assures that the system solution is complete an bi-directional traceability between the artifacts of two models or might indicate will effinement are needed. This might further apply to traceability gaps within a single plicit traceability between artifacts of different design stages. The prerequisites of ement are agreed-upon, a priori guidelines and definitions, e.g., what model elements be traced, that apply to the specific DE model of the system. <i>Note:</i> While traceability any model elements of interest that shall be defined a priori, functional architectuu vs explicitly focuses on functions, requirements, and the associated hierarchy. and analyses might be facilitated by digital modeling tools. The traceability mappings and nent life cycle, such as: ty between stakeholder needs, system requirements, and allocated or derived requi- iel of the system hierarchy ty and flow down of requirements to the logical or physical solution domain (e.g., tation, integration, verification, validation) and traceability of performance measures or parameters, such as Measures of ess (MOEs) or Key Performance Parameters (KPPs) ty of system interfaces	ships to re my ts and eports esign, esign,		Model Traceability can be depicted using visual or tabular summaries of the relationships among model elements. The specific indicators may depend on the model elements for which traceability is being measured, and the built-in reports and analyses provided by the digital modeling tool. For example, traceability among model elements might be implemented by showing requirements derivation and model traceability coverage of stakeholder needs into system and component requirements. Representative example indicators used to assess traceability dependencies among selectable model elements (e.g., requirements, use cases, activities, logical architecture and design, physical design, interfaces, parameters, measures of performance) are depicted in Figure 8.2-1. Here, mostly 2-dimensional matrices containing model specific model elements of interest are utilized. Alternatively, the relationship between model elements might be depicted as flow down. With respect to Figure 8.2-1 (bottom left), a specific use case is linked to related actions via an activity diagram.	rmation and Guidance	Additional Analysis Guidance Implementation Considerations Information Category Measurable	
Definitions	Relevant Terminology	Model Element Source Element Destination Element Traceability Gap	Modeling constructs used to capture the structure, behavior, and relationships among system model components (See 2.2.2 Model Element) The <i>a priori</i> base model elements defined per DE model from which other mode elements shall be derived from or allocated to, e.g., a stakeholder needs. The model elements defined per DE model that shall be derived from or allocate the Source Elements. One or more model elements defined per DE model that shall be traced, but that have not yet been derived or allocated to Source Elements. Note: For enhanced traceability concepts refer to the advanced topic discussion.	to	Indicator Description and Sample	Traceability Between Model Elements (Dependency Matrix) Projects and organizations shall define the objectives, constraints, and criteria for establishing traceability among applicable model elements. This is typically guided by a model schema, metamodel, or blueprint that constrains traceability to meet the model's purpose. Review and analyze traceability dependencies among model elements to assess the completeness, adequacy, onal its and integrity of the direct model.	dditional Info	Concept Relevant Entities Attributes Data Collection Procedure Data Analysis Bracedure	
Derived	Information Need	Information Need and Measure Description What is the extent of achieved traceability coverage from Source Elements, e.g., requirements, down to the logical or physical solution domain? What is our progress in completing the digital model? What traceability gaps exist? Model Elements Traced [integral		Analysis Suidance	Analysis Model	 elements selected, but general guidelines may include: Each source (parent) model element (Model Element 1) should be traceable to one or more allocated or derived destination (child) model elements (Model Element 2). Each destination (child) model element (Model Element 2) should be derived from, or refine, a parent requirement or model element (Model Element 1). Determine if the set of linked dependencies are, in aggregate, sufficient to adequately implement the parent requirement or model element. 	A	rrocedure	
es (Base,	Base Measure 1 Base Measure 2	"Number of model upon, <i>a priori</i> guid Model Elements No Number of model e upon, <i>a priori</i> guid	elements in a 1 <u></u> n source/destination element relationship(s) as defined in an agreeline. bt Traced [integer] lements not in any 1 <u></u> n source/destination <i>element relationship as</i> defined in an a eline.	d reed	Decision Criteria	In case a desired model traceability coverage (Derived Measure 2), e.g., 70%, of model elements of interest has not been met, the team shall specifically address these gaps. To validate whether the system meets stakeholder needs, at minimum, the system requirements should be traceable to these stakeholder needs. Model elements that do not satisfy requirements, might be obsolete and shall be evaluated. Again, the prerequisites of any decision making are agreed-upon, a priori guidelines and definitions, e.g., what model elements and relationships shall be traced, that apply to the specific DE model of the system			
Measur	Derived Measure 1	Total Model Eleme Total number of mo <i>Note:</i> As defined in	nts = Model Elements Traced + Model Elements Not Traced [integer] odel elements an agreed upon, a priori guideline (See Base Measure 1 and Base Measure 2).						

tities

Digital Engineering Measurement Framework – Example Indicators

Is the architecture complete to proceed with design?

What is the traceability and coverage of model elements?

Product Size (Model Elements)

DE Anomalies Anomalies Originated, Detected, & Resolved Anomalies Open 120 50 Verification Validation Operations System Design Integration Verification Validation Operations System Ramts Implement Architecture Definition 45 100 40 80 35 E 30 60 Je 25 by 20 40 Three 15 Anomalies 20 Detected i 10 Operations 5 0 32 13 17 21 25 29 5 q 13 17 21 25 29 32 Anomalies Detected omalies Originated Anomalies Open (including Deferred) Anomalies Resolved Historical Anomalies Discovered Are we finding and removing anomalies earlier using DE?

Is product guality adequate to be used in subsequent phases?

Adaptability and Rework

How much rework is for planned and unplanned changes?

DE Measurement Framework v1.0

Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 \triangleright

9

Digital Engineering Measurement Framework – Example Indicators

What percentage of artifacts are automatically model-generated?

Runtime Performance

How long does it take to deploy an identified capability?

What is the likelihood performance will meet operational needs?

Excerpts only from DE measurement specifications. Some specs have multiple sample indicators. See framework Section 8 - Measurement Specifications for details.

10

Tying it all together – DE measurement framework concept

PRACTICAL SOFTWARE AND SYSTEMS MEASUREMENT

Editors	Organization				
Joseph M. Bradley	Main Sail, LLC				
Cheryl Jones	US Army DEVCOM AC				
	Practical Software and Systems Measurement (PSM)				
Geoff Draper	L3Harris Technologies				
	AIA Engineering Management Committee				
	NDIA Systems Engineering Division				
Tom McDermott	Systems Engineering Research Center (SERC)				
	Stevens Institute of Technology				
Paul Janusz	US Army DEVCOM AC				
	Practical Software and Systems Measurement (PSM)				
Authors	Organization				
Lennis Bearden	L3Harris Technologies				
Giacomo Gentile	Collins Aerospace				
Richard Halliger	Volkswagen Group				
Ray Madachy	Naval Postgraduate School				
Drew Miller	The Boeing Company				
Voung Park	Colling Agrospage				
Boh Scheurer	The Boeing Company NDIA Systems Engineering Division				
Doo Scheurer	AIA Engineering Management Committee				
	Any Engliceting Management Committee				
Core Team	Organization				
Kaitlin Henderson	Virginia Tech				
Al Hoheb	Aerospace Corporation				
Bill Luk	BAE Systems				
	AIA Engineering Management Committee				
Lisa Murphy	Siemens Digital Industries Software				
Jeff Nartatez	Office of the Undersecretary of Defense for Research and Engineering				
Come Doubles	(OUSD R&E) [SAIC]				
Garry Roedler	INCOSE NDIA Systems Engineering Division				
Alaiandra Salada	The University of Arizona				
Frank Salvatora	Office of the Undergountary of Defense for Descende of J Franciscoving				
Frank Salvatore	(OUSD R&F) [SAIC]				
Paul Segura	The Boeing Company				
I dui soguiu	AIA Engineering Management Committee				
Natasha Shevchenko	Software Engineering Institute, Carnegie Mellon University				
Marilee Wheaton	Aerospace Corporation				
	INCOSE				

Additional Contributors	Organization
David Allsop	The Boeing Company
Sanjay Angadi	Ansys
	AIA Engineering Management Committee
David Cooper	BAE Systems
Mimi Davidson	Office of the Undersecretary of Defense for Research and
	Engineering (OUSD R&E) [SAIC]
John Dilger	BAE Systems
Paul Embry	L3Harris Technologies
	AIA Engineering Management Committee
Ann Hodge	Sandia National Laboratories
Mike McLendon	Retired
Robert Minnichelli	Aerospace Corporation
Gery Mras	Aerospace Industries Association (AIA)
Rosco Newsome	Ernst & Young (EY)
Bill Nichols	Software Engineering Institute, Carnegie Mellon University
Ryan Noguchi	Aerospace Corporation
Macaulay Osaisai	L3Harris Technologies
Steven Quinn	BAE Systems
Donna Rhodes	Massachusetts Institute of Technology (MIT)
Chris Schreiber	Lockheed Martin Corporation
	NDIA Systems Engineering Division
Paul Solomon	Retired
Brian Tenney	Lockheed Martin Corporation
Sundar Thyagarajan	L3Harris Technologies
Steven Turek	United States Air Force
Timothy Walden	Lockheed Martin Corporation
John Wood	Naval Information Warfare Command

Much appreciation to the many individuals and organizations that supported development of the V1.0 Digital Engineering Measurement Framework!

Where do we go from here?

- **DE** measures for the enterprise
- Measure breadth of usability and user experience with digital tools
- Measure return on investment
- Measure additional productivity indicators related to velocity and agility
- Measure additional indicators that isolate new value to the enterprise through DE, in areas such as quality and knowledge transfer
- Measure enterprise and personnel process adoption
- Measure usability and user experience with digital tools
- Supportability and maintainability measures (impact assessment agility)
- Measures for security
- Identify typical digital artifacts
- Specify leading indicators

Summary – Digital Engineering Measurement Framework v1.0a

- Lack of common measures and established best practices have inhibited digital transformation
- The v1.0a release of the DE Measurement Framework establishes an initial consensus from our partners as a starting point to advance a discussion across industry some measures are conceptual

This initial DE measurement framework proposed by our team of representative stakeholder experts is intended to help projects and enterprises establish an initial path toward a measurably effective transition and implementation of digital engineering methods. It is but the first steps along this path, it will be a long and challenging but rewarding journey, and our industry will learn, iterate, and evolve as we go. We hope enterprises across a variety of application domains will find this initial measurement guidance useful to assess the effectiveness of their respective digital engineering transformation initiatives.

- Help us improve it! Participate in reviews, provide comments and suggestions, pilot the measures proposed, and participate in the future evolution of this framework
- Contact our team leads to get further involved

Joe Bradley	Cheryl Jones
Leading Change LLC	Practical Software and Systems Measurement (PSM)
josephbradley@leading-change.org	cheryl.l.jones128.civ@army.mil