
Can Data-Driven Systems
Engineering Meet the Goals of SE

Modernization?Steven H. Dam, Ph.D., ESEP
President, SPEC Innovations

571-485-7805
steven.dam@specinnovations.com

Public Release Approved

OSD’s Initiative: Systems Engineering Modernization
• The Department of Defense (DoD)

Office of the Under Secretary of
Defense (USD) for Research and
Engineering has identified a number of
“systems engineering practices” that
require “integration”

• The objective is to “modernize systems
engineering to support the delivery of
capability to meet mission needs”

• Congress also has provided legislative
direction in four of these practice
areas:
o Digital Engineering
o MOSA
o Mission Engineering
o Agile Development

SE Modernization – SERC ‘s View
aka “The

Bomb
Cyclone

Diagram”

From https://sercuarc.org/systems-
engineering-
modernization/?utm_source=newsletter&ut
m_medium=email&utm_content=Systems
%20Engineering%20%28SE%29%20Mod
ernization&utm_campaign=SERC%20UPD
ATES%20JUN%202022 accessed
6/22/2022

“…this view
emphasizes the DE
transformation using a
layered model with
data storage and
transformation at the
core…”

So to implement this approach we need to be data-driven in systems engineering

Systems Engineering Research Center (SERC)

https://sercuarc.org/systems-engineering-modernization/?utm_source=newsletter&utm_medium=email&utm_content=Systems%20Engineering%20%28SE%29%20Modernization&utm_campaign=SERC%20UPDATES%20JUN%202022

What’s Data-Driven Systems Engineering (DDSE)?
• To integrate the “modern engineering practices” we need a common language, not just

a set of models
• By using a language driven approach, we can focus on the data and less on the form

(”model”)
• This data-driven approach needs a new way to think about systems engineering –

hence DDSE
• We define DDSE as:

o the transformation of user needs to requirements for design engineering and the transformation of
design engineering data into verified and validated system-level information for decision makers to
make better decisions throughout the lifecycle

• This definition refocuses us on the underlying basis for systems engineering and
explicitly identifies the benefit to all stakeholders
o Design engineers get clear, easy to understand requirements
o Decision makers get the information they need to make good decisions

• Fortunately there already exists such a language to meet this need: the Lifecycle
Modeling Language (LML)

Lifecycle Modeling Language (LML)
• LML was developed by a group of systems engineers who

realized that SysML was not meeting the needs of the
systems engineering and program management
communities

• LML is current managed by the not-for-profit organization:
Lifecycle Modeling Organization (LMO)

• The Steering Committee is led by Dr. Warren Vaneman,
USN CAPT (retired) and Professor of Practice at the Naval
Postgraduate School (NPS)

• LML is taught in over 200 universities around the world,
including MIT, George Mason University, Stevens Institute
of Technology, West Point, NPS, Air Force Academy

• LML is easy to learn, use, and extend
• Visit http://www.lifecyclemodeling.org

LML has proven to provide a strong ontology for systems engineering and program
management and forms the basis for Data-Driven Systems Engineering (DDSE)

http://www.lifecyclemodeling.org/

LML Overview
• A simple, easy to use set of classes (nouns)
• Maps to DoDAF, UAF, SysML, BPMN, etc.
• Connected by two-way relationships (verbs)
• Easily extended
• Contains data elements for all the SE

Modernization practices Action Artifact Asset
(Resource)

Characteristic
(Measure)

Connection
(Conduit,
Logical)

Cost Decision Input/Output

Location
(Orbital,
Physical,
Virtual)

Risk Statement
(Requirement)

Time

Action decomposed by*
related to*

references

(consumes)
performed by

(produces)
(seizes)

specified by - incurs
enables

results in
generates
receives

located at
causes

mitigates
resolves

(satisfies)
traced from

(verifies)
occurs

Artifact referenced by
decomposed by*

related to*
referenced by

referenced by
specified by

defines protocol for
referenced by

incurs
referenced by

enables
referenced by

results in
referenced by located at

causes
mitigates

referenced by
resolves

referenced by
(satisfies)
source of

traced from
(verifies)

occurs

Asset
(Resource)

(consumed by)
performs

(produced by)
(seized by)

references
decomposed by*

orbited by*
related to*

specified by connected by incurs

enables
made

responds to
results in

- located at
causes

mitigates
resolves

(satisfies)
traced from

(verifies)
occurs

Characteristic
(Measure)

specifies
references
specifies

specifies
decomposed by*

related to*
specified by*

specifies
incurs

specifies

enables
results in
specifies

specifies
located at
specifies

causes
mitigates
resolves
specifies

(satisfies)
spacifies

traced from
(verifies)

occurs
specifies

Connection
(Conduit,
Logical)

-
defined protocol by

references
connects to specified by

decomposed by*
joined by*
related to*

incurs
enables

results in
transfers located at

causes
mitigates
resolves

(satisfies)
traced from

(verifies)
occurs

Cost incurred by
incurred by
references

incurred by
incurred by
specified by

incurred by
decomposed by*

related to*

enables
incurred by

results in
incurred by located at

causes
incurred by
mitigates
resolves

incurred by
(satisfies)

traced from
(verifies)

occurs

Decision enabled by
result of

enabled by
references
result of

enabled by
made by

responded by
result of

enabled by
result of

specified by

enabled by
result of

enabled by
incurs

result of

decomposed by*
related to*

enabled by
result of

located at

causes
enabled by

mitigated by
result of
resolves

alternative
enabled by
traced from

result of

date resolved by
decision due

occurs

Input/Output generated by
received by

references - specified by transferred by incurs
enables

results in
decomposed by*

related to*
located at

causes
mitigates
resolves

(satisfies)
traced from

(verifies)
occurs

Location
(Orbital,
Physical,
Logical)

locates locates locates
locates

specified by
locates locates locates locates

decomposed by*
related to*

locates
mitigates

locates
(satisfies)

traced from
(verifies)

occurs

Risk
caused by

mitigated by
resolved by

caused by
mitigated by

references
resolved by

caused by
mitigated by
resolved by

caused by
mitigated by
resolved by
specified by

caused by
mitigated by
resolved by

caused by
incurs

mitigated by
resolved by

caused by
enables

mitigated by
results in

resolved by

caused by
mitigated by
resolved by

located at
mitigated by

caused by*
decomposed by*

related to*
resolved by*

caused by
mitigated by
resolved by

occurs
mitigated by

Statement
(Requirement)

(satisfied by)
traced to

(verified by)

references
(satisified by)

sourced by
traced to

(verified by)

(satisified by)
traced to

(verified by)

(satisified by)
specified by

traced to
(verified by)

(satisified by)
traced to

(verified by)

incurs
(satisified by)

traced to
(verified by)

alternative of
enables

traced to
results in

(satisified by)
traced to

(verified by)

located at
(satisfied by)

traced to
(verified by)

causes
mitigates
resolves

decomposed by*
traced to*
related to*

occurs
(satisified by)
(verified by)

Time occurred by occurred by occurred by
occurred by
specified by

occurred by occurred by
date resolves
decided by
occurred by

occurred by occurred by
occurred by

mitigates

occurred by
(satisfies)
(verifies)

decomposed by*
related to*

Action Diagram

Asset Diagram

Spider Diagram

How Do We Implement DDSE?
• Since we need to cover all aspects of systems engineering in a data-driven

approach we need tools to support this activity, as we cannot maintain this
vast amount of data without using database technologies

• Those tools should include requirements analysis, functional/object analysis,
modeling and simulation, verification and validation, risk analysis, cost
analysis, and schedule analysis as a minimum

• The tools should also support modern computer architectures with cloud
computing being the most common today
o Secure clouds are currently available at all levels of security for any Department or

Agency
• The tools also need to have an open architecture to enable easy movement of

data between tools as we cannot expect the world to adopt only one tool!
• So let’s look at tools today

Most of Today’s Systems Engineering Tools
Are Based on 20th Century Technology

 Learning full SysML/UML often
takes months

 Dozens of options are present on
many views

 Drawings usually must be
redrawn (ex. the Sequence,
Activity, and BDD)

 Required desktop software
installation to modify the models

 Lack of built-in variance
simulation (Monte Carlo
Simulation)

 Activity Diagrams do not have to
be executable

 Focus is typically only on drawing
models

 Most organizations use additional
tools for requirements
management, test management,
and Monte Carlo simulation

 Model conflicts during commits
(no real-time collaboration)

 Models typically only
communicate to the SE domain

 Server collaboration software
often does not scale and users
suffer long download/commit
times (>20 min)

Diff icul t
to Use

Limited Li fecycle
Management

Lack of
Col laboration

The Models Do
Not Execute

So is there a set of tools that can meet this need?

https://sma.nasa.gov/docs/default-source/News-Documents/eparrott_grc-mbse-status_gsfc-workshop.pdf?sfvrsn=4

Innoslate – A 21st Century
Solution

 Common options
at the forefront

 Primary tool
language is easy to
learn (LML)

 Works with no
installation, in a
web browser

 Autogenerated
diagrams and
dashboards
(concordance)

 Tested to over 10
Million entities and
1,000 simultaneous
users

 Cloud hardware auto-
scales

 Software designed to
scale

Simplicity Collaboration Accuracy

 Real-Time
Collaboration (Group
Chat/Real Time)

 Easy Communication
to other stakeholders
(not just SEs)

 Proven Model-Based
or Data-Based Review
(MBR/DBR) capability

 Full Discrete Event
Simulator which
simulates cost, schedule,
and performance is
integrated into the
Action Diagrams

 Full Monte Carlo
Simulator to simulate
variance

 NLP/ML for
Requirements Quality
and Traceability

 Intelligence View

Scalabil ity

Ful l
L i fecycle

Management
Support

Interoperabi lity

 Automatically generate
and/or use other
representations (SysML,
DoDAF)

 Import from other RM
tools (IBM DOORS CSV
and ReqIF, Excel CSV)

 Integrations with STK,
MatLab, and GitHub

 Open Java, REST, and
JavaScript APIs

 Full requirements
analysis and
management capability
with Requirements View

 Full modeling capability
(SysML/LML/IDEF0)

 Test Center (Test Suites
and Test Cases)

 Documents View
(CONOPS, Project Plan,
and Test Plan)

 First release: 2012
 Cloud-Native
 AI/NLP
 Agile

Sopatra®

10

​We designed Sopatra with the overall goal to demonstrate the
improved creation of Standard Operating Procedures (SOPs) by
the automated creation and verification of SOPs using a digital
assistant (DA)

• Uses Natural Language Processing (NLP) for interacting with the
systems engineering development environment (i.e. creating the
behavior model)

• Provides configuration management and revision management of
massive models

• Develops executable simulation of the behavior model
• Built on Innoslate®

Sopatra is a digital assistant that
will convert text to an LML Action Diagram
and execute the simulation automatically

to check all possible paths
through the procedure.

Standard Operating Procedures Advanced Technology and Requirements Analysis

Ansys
• The Ansys tool suite is the “gold

standard” of design engineering tools
• With their recent acquisition of AGI,

they brought the premier geospatial
analysis tool (STK) into their tool set

• With the recent acquisition of Phoenix
Integration, they brought an amazing
way to integrate a variety of common
modeling and simulation tools –
ModelCenter

• They are exploring porting what they
can to cloud computing environments,
however for system engineering, we
need to mostly be concerned with
providing the design engineers with
good requirements and receive the
results of the design engineering
activities

11

Innoslate Integrates Systems Engineering Activities
Across the Entire Lifecycle

Documents View

Requirements View

Modeling

Timeline

Simulation

Risk AnalysisWBS

Design Engineering
Integrations

Test Center

Sopatra

Innoslate’s Digital Ecosystem

Goals of
Integration:
1) Use data to
create
information
between tools;
2) Minimize
data duplication
between tools.

• Innoslate® provides a
complete DDSE/DDE
environment

• A JWA is used to
interface between the
Innoslate cloud tool and
desktop tools

• We have directly
integrated a number of
key design engineering
technologies to
complete the digital
thread

• Several other tools are
being added to enhance
the current capability

SPEC Innovations is an Ansys Partner

Innoslate® Uses a MOSA Architecture
• Plugins are viewpoints of the Innoslate

database
• Plugin features

o Not a standalone application (requires
Innoslate Core)

o All authentication is through Innoslate Core
with the options for:
 Single-Sign-On CAC (Default)
 Native Email/Password (Optional)
 LDAP (Optional)

o All data is stored in the U.S. Government
managed SQL database using Innoslate Core
(no data lock)

o Innoslate REST API facilitates plugin data
exchange Modular Open Systems Approach (MOSA) Architecture Enables

Architecture to Operations (DEVOPS)

How Does LML, DDSE, and the Innoslate/Ansys Tool
Suite Support SE Modernization?
• Digital Engineering

o Innoslate, Sopatra, and the Ansys Tool Suite provide the full range of tools needed to create digital
twins

• MOSA
o Functional analysis focuses on functions that can be allocated in many different ways – Innoslate

provides a complete functional (and object) analysis capability
o LML & Innoslate have unique interface diagrams to enable better definition of the interfaces
o Innoslate’s MOSA architecture enables modular use of the data too

• Mission Engineering
o Integration of the Innoslate discrete event simulator with STK enables us to plan, analyze, organize,

and integrate operational and system capabilities to achieve desired effects
• Agile Development

o Innoslate provides direct integration to software engineering tools (GitHub and Selenium – in near
future) and provides Kanban Boards and other Agile tools

o Can align Sprints and Epics with standard SETR events by conducting Data-Driven Reviews

Summary
• SE Modernization requires us to use

21st Century technologies to design and
build the future

• We need to use these technologies to
break down the walls we have erected
between these modern practices

• LML and the Innoslate/Ansys digital
engineering tools will help us break
down those walls and create the digital
ecosystem needed

It’s all really about doing system engineering well!

	Can Data-Driven Systems Engineering Meet the Goals of SE Modernization?
	OSD’s Initiative: Systems Engineering Modernization
	SE Modernization – SERC ‘s View
	What’s Data-Driven Systems Engineering (DDSE)?
	Lifecycle Modeling Language (LML)
	LML Overview
	How Do We Implement DDSE?
	Most of Today’s Systems Engineering Tools Are Based on 20th Century Technology
	Innoslate – A 21st Century Solution
	Sopatra®
	Ansys
	Innoslate Integrates Systems Engineering Activities Across the Entire Lifecycle
	Innoslate’s Digital Ecosystem
	Innoslate® Uses a MOSA Architecture
	How Does LML, DDSE, and the Innoslate/Ansys Tool Suite Support SE Modernization?
	Summary

