
© 2022 Raytheon Technologies Corporation.

All rights reserved.

Kurt Mohr & Darryl Nelson
RI&S Engineering

November 2, 2022

Agile/MOSA/Microservice Architectures
Stronger Together

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.



• Establish a Lexicon – defining Agile, Microservices, and MOSA

• Speed of Agility - agility and speed are keys to successful deployment of incremental 

capabilities

• Microservice interfaces - microservice architectures can represent both major and 

minor interfaces

• Interface Stability of MOSA - MOSA, with more stringent interface adherence at the 

major level, may be viewed as conflicting with rapid changes and trial and error of Agile

• Adaptability vs. Stability - using microservices to develop rapidly adaptable systems 

in an agile manner while meeting the MOSA requirements of modular design at the major system 

level, using consensus -based standards, and having severability at all levels of the architecture

• Architectural Strategies - architectural strategies for internal and external interfaces, 

and interface compatibility/extensibility

• Reference Architecture – what does ‘good’ look like

• Commercial Examples - interface stability at the major system level while providing 

adaptability and modularity at the lower levels of system architectures

• DevSecOps - enable speed and agility of microservice architectures while ensuring the 

quality of service required for MOSA system architectures
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https://ac.cto.mil/wp-content/uploads/2020/06/MOSA-Ref-Frame-May2020.pdf

Agile
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• Many Agile methodologies, but same basic values:

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

• Focus on Agility

– Ability to move or adapt quickly

– Better Software through tight Feedback Loops for Rapid Adaptation

– Facilitates fast learning

• Allows rapid change based on new information and discovery

– Learning lessons and trying new approaches (retrospectives)

– Buying down risk through experimentation (prototyping)
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Lexicon - Agile

Agility is about adapting rapidly and not being tied to an original plan

agilemanifesto.org/
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• Next evolution of Service-Oriented Architecture 

(SOA) to Microservices

– Suites of software applications composed of independently 

deployable services 

– Loosely coupled services

– Fine-grained, meaning small in size and scope

– Light-weight protocols

– Independently managed

– Delivering systems as a set of constrained, granular, 

independent collaborating services

• Value of Microservice Architectures

– Enforces Isolation for resilience and elasticity 

– Ability to create and deploy fixes independently

– Limiting the reach of defects

– Minimizes the need for specialized personnel knowledge

– Can be assembled in different ways to produce different results

– The independent services can be composed together to 

cooperate, providing sophisticated business services
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Lexicon – Microservice Architecture

Microservice Architectures maximizes the number of ‘services’ to build on 

Microservices

Benefits

Loose Coupling

Greater Fault Tolerance

Simplicity

Business Agility

Thru Isolation & 

Compartmentalization

Enabler of Continuous/

Integration Delivery 

Services can evolve independently

Service teams can deliver independently

Each service can focus on 

doing one thing well

Single Responsibility Principle

SOA Monolith 
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• MOSA Definition

• A modular design that uses major system interfaces between major platforms/systems/components

• Ensures major system interfaces use widely supported and consensus-based standards

• Allows major system components severability at the appropriate level to be added/removed/replaced 

• MOSA intent is to:

• Support a more rapid evolution of capabilities and technologies throughout the product life cycle 

• Ensure architecture modularity, open systems standards, and appropriate business practices. 

• Expectation is MOSA delivers:

• Enhance competition

• Facilitate technology refresh

• Incorporate innovation
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Lexicon - MOSA

MOSA employs standards to allow component replacement

• Enable cost savings/cost avoidance

• Improve interoperability

References
▪ https://www.dsp.dla.mil/Programs/MOSA/

▪ https://ac.cto.mil/mosa/

https://ac.cto.mil/wp-content/uploads/2020/06/MOSA-Ref-Frame-May2020.pdf
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• Agile methodologies deliver capabilities quickly at 

lower risk

– Incremental deliveries on a regular cadence

– Short cycle times get things to users for evaluation

• Experimentation allows new technologies to be 

evaluated

– “Fail Fast” methodology to determine what works and what doesn’t

– No long development cycles 

• Minimal Viable Product (MVP) can be found and 

refined

– Many times the “most important features” evolve

– Eliminating unnecessary features can save cost and schedule

• Testing early and often reduces tail end schedule risk

– “Test gets compressed” mentality changes to “shift left”
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Speed of Agility

Agile shortens timelines to get things into customer’s hands

Dr Ian Mitchell, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Waterfallvsagile.jpg
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Agility + MOSA – Contradictory or Complimentary?

Agility provides several of the outcomes MOSA seeks to achieve
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Improve 
Interoperabi
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MOSA Benefits

Enable cost savings/cost avoidance
▪ Risk mitigation and rapid fielding support cost 

avoidance through early testing

▪ Customers can focus on MVP

Incorporate innovation
▪ Experimentation and team-driven priorities 

enables innovation

Facilitate technology refresh
▪ Agility can shorten technology refresh cycles
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• Microservices have individual interfaces

– Instead of one large interface, many smaller ones

– Small, concise interfaces are easier to understand

• Deployment can be targeted

– Deploying a single service for a test or a set for added functionality

• Interface changes don’t require all parties aligning schedules

– Interfaces can be versioned and operate concurrently

– Deprecating old interfaces gives time for callers to adapt

• Changing out a microservice provider is low impact

– Can operate the old and new concurrently

– Changing the endpoint can be as easy as a DNS entry
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Microservice Flexibility

Microservice architectures decouple implementation from interface

User 1

API V1

User 2

API V2

API V1

API V2

API V3

Deprecated API

DNS

Microservice Versions

Large System API Small Concise APIs
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Microservices + MOSA – Can they live together?

Microservices have the potential to aide MOSA objectives
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MOSA Benefits

Enhance competition
▪ Microservices allow competing services to be evaluated

▪ Services can live side by side for comparison or use

Facilitate technology refresh
▪ New versions can co-exist with older ones for refresh

▪ Microservices can be updated independently

Incorporate innovation
▪ Services enable deployment of MVP with rapid iteration 
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• But MOSA is looking for interface stability, right?

• A modular design that uses major system interfaces between major 

platforms/systems/components

• Ensures major system interfaces use widely supported and consensus-based 

standards

• Allows major system components severability at the appropriate level to be 

added/removed/replaced 

• MOSA focuses on the major systems

– MOSA is silent on the minor systems and components

– There is no clear definition of “major”

• Interfaces are tightly controlled and versioned

– Allowing ad-hoc updates would be chaotic at best

– Version changes go through multiple reviews with many stakeholders
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MOSA Interface Stability

MOSA’s key concerns are major interface boundaries

Modular Open Systems Approach (MOSA) Reference Frameworks in Defense Acquisition Programs, Deputy 

Director for Engineering, Office of the Under Secretary of Defense for Research and Engineering, Director of 

Defense Research and Engineering for Advanced Capabilities, May 2020, Distribution Statement A. Approved 

for public release. Distribution is unlimited.

https://ac.cto.mil/wp-content/uploads/2020/06/MOSA-Ref-Frame-May2020.pdf
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Adaptability vs. Stability

Ease of change vs. the stability for long contract cycles seem to be at odds

Adaptability Stability
Agile and Microservices provide adaptability

– Both in implementation details and interface changes

– Adding new services or updating them rapidly

– Running concurrently or deviating for specific needs

– Accepting trial and error to ‘learn’ the best approach

– Technology change at the most granular level

– Every microservice is replaceable 

MOSA provides interface stability

– Rarely changing interfaces

– Generally, one implementation in the system at a 

time

– Technology refresh of large system components

– Competition at the macro level
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• Microservices allows for frequent interface changes

– Agile allows for interfaces to be updated regularly

– MOSA does not allow for interfaces to change in weekly Agile cycles

• Agile experimentation isn’t consensus-based 

– MOSA relies on consensus for interfaces

– Microservice changes could be ‘tried’ in an agile increment with a subset of callers

• MOSA is serving a wide range of stakeholders

– Agile has stakeholders, but it does not require consensus

– Microservices could have different versions for different stakeholders
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So Do they Conflict?

So Agile and Microservices work, but not with MOSA?
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• While the approaches differ, there are significant synergies

– Changes at the micro-level don’t need to be coordinated

– Microservices can be callers of major interfaces

• Competition enhancement at all levels

– MOSA brings it at major components

– Microservice architectures compete deeper in the architecture

– “Competition” can be capability, not just provider, using Agile
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Same Objectives, Different Approach

Combining Agile, MOSA, and Microservices are Different but Complementary Approaches 

They Serve the Same Objectives 

Agile Microservices

• Interoperability can be enhanced

– Rapid microservice adapters can insulate from major changes through 

design patterns

• Façade pattern, Delegation pattern, and Proxy pattern

– Interface versioning can be implemented quickly in Agile

https://ac.cto.mil/wp-content/uploads/2020/06/MOSA-Ref-Frame-May2020.pdf
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• Defining Major and Minor Interfaces
– Architecturally defining which interfaces are major and thus MOSA

– Providing API registration for interface selection of minor interfaces

– Using extensible interface protocols

• E.g. Adding optional content to JSON messages

• Intelligent Routing
– Routing data based on the recipient’s needs

– Changing routing rules to old or new service implementations 

– Identifying interfaces that are backwards compatible or where multiple versions could co-exist
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Architectural Strategies

Multiple strategies can be used to marry the approaches
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• Data Adaptation
– A microservice can be inserted to adapt new interface calls to old

• E.g. Stripping new fields so that a recipient can continue to function

– Developed, tested, and deployed quickly through Agile

– When the recipient is ready for the new interface, the microservice is disabled or updated

• Maximizing Stateless Processing
– Decoupling data state between components to reduce major interface dependency

– Using proxy interfaces to deal with ‘extra’ data across major interface points

• Using Big Data Approaches 
– Segregating responsibilities to the lowest levels

– Using data aggregation services to initiate major interface calls
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Architectural Strategies cont.

MOSA objectives are all about dependencies, minimize those
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Data Services Layer
Data Microservices
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Reference Architecture

Microservices can bridge the gaps
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Strangler Pattern: Incremental Modernization

A software pattern of incremental migration of a legacy system by replacing existing 
functionalities with new applications and services in a phased approach.

Clients Legacy

Application
Database

Strangler

Service
Clients Legacy

Application
Database

Clients
Database

Strangler

Service
Clients

Legacy

Application

Database

Strangler

Service

1      Original legacy application

2      Strangler as a pass through

3      Strangler taking over some 

responsibilities

4     Complete transition to Strangler
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Business Logic Layer

• Use Strangler pattern for incremental modernization to an application by adding microservices

• Agile methods provide boundaries to limit risk each increment
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Agile Migration Paths

Migration doesn’t have to be a “big bang”
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• Soda manufacturer vending machines
– Vending machines call microservice 

• Implemented as Lambda function

– Data is conformed to major payment APIs
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Commercial Example

– Newer vending machines updated to use latest interface features

– Microservices send notifications to users

Soda

Notification

Microservice
Payment Data Validation

API Gateway Payment Processing

Endpoint

Customer

Recipient

SMS

Notification

Connectivity

User Preferences

“aws-icons-for-plantuml” by awslabs is licensed under CC BY-ND 2.0. 

aws-icons-for-plantuml/LICENSE at main · awslabs/aws-icons-for-plantuml · GitHub

https://github.com/awslabs/aws-icons-for-plantuml
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• Amazon Selling Partner interface
– Supports multiple versions of agreed to static interfaces

– Concurrent execution routed by URL

– Similar to other Amazon and AWS interfaces
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Commercial Example

Selling Partner 

API VersionsAuthentication

2020-09

2021-06

2022-08

Role

Lambda Function

Microservice

Shared Storage

API Gateway

Additional Client

Microservice

– Data adaptation and role restrictions

– Callers can easily abstract their version away

“aws-icons-for-plantuml” by awslabs is licensed under CC BY-ND 2.0. 

aws-icons-for-plantuml/LICENSE at main · awslabs/aws-icons-for-plantuml · GitHub

https://github.com/awslabs/aws-icons-for-plantuml
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What about DevSecOps?

DevSecOps supports MOSA, Agile, and Microservice approaches

Kharnagy, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

https://upload.wikimedia.org/wikipedia/commons/0/05/Devops-toolchain.svg

Automated verification finds issues early

– Validates that the interfaces didn’t change

– Regression tests the microservice functionality

– Allows validation of multiple versions 

concurrently in operations

DevSecOps allows rapid deployment with 

reduced risk posture

– Deploys micro-services at the lower levels while 

maintaining interface code stability

– Reduces risk of full system deployments

– Significantly reduces or eliminates downtime for 

deployments

Improves security posture

– Allows targeted patching of critical security 

changes

– Enables automated security testing on granular 

level
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• UX is Not Just for UI’s: Design the interface contract FIRST with stakeholders
– Tools: e.g. Swagger

• Patterns: Use them!
– Recommended book: https://www.manning.com/books/soa-patterns

• Use Frameworks
– e.g. Spring

• No one tool is right for every job

• Adopt and Integrate Chaos Engineering
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Microservice Recommendations

¹ https://principlesofchaos.org/ 

– Chaos Engineering is the discipline of experimenting on 

a distributed system in order to build confidence in the 

system’s capability to withstand turbulent conditions in 

production.¹
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Thank you.
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