
© 2022 Raytheon Technologies Corporation.

All rights reserved.

Kurt Mohr & Darryl Nelson
RI&S Engineering

November 2, 2022

Agile/MOSA/Microservice Architectures
Stronger Together

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• Establish a Lexicon – defining Agile, Microservices, and MOSA

• Speed of Agility - agility and speed are keys to successful deployment of incremental

capabilities

• Microservice interfaces - microservice architectures can represent both major and

minor interfaces

• Interface Stability of MOSA - MOSA, with more stringent interface adherence at the

major level, may be viewed as conflicting with rapid changes and trial and error of Agile

• Adaptability vs. Stability - using microservices to develop rapidly adaptable systems

in an agile manner while meeting the MOSA requirements of modular design at the major system

level, using consensus -based standards, and having severability at all levels of the architecture

• Architectural Strategies - architectural strategies for internal and external interfaces,

and interface compatibility/extensibility

• Reference Architecture – what does ‘good’ look like

• Commercial Examples - interface stability at the major system level while providing

adaptability and modularity at the lower levels of system architectures

• DevSecOps - enable speed and agility of microservice architectures while ensuring the

quality of service required for MOSA system architectures

2

Agenda

+

+

https://ac.cto.mil/wp-content/uploads/2020/06/MOSA-Ref-Frame-May2020.pdf

Agile

Microservices

+

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• Many Agile methodologies, but same basic values:

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

• Focus on Agility

– Ability to move or adapt quickly

– Better Software through tight Feedback Loops for Rapid Adaptation

– Facilitates fast learning

• Allows rapid change based on new information and discovery

– Learning lessons and trying new approaches (retrospectives)

– Buying down risk through experimentation (prototyping)

3

Lexicon - Agile

Agility is about adapting rapidly and not being tied to an original plan

agilemanifesto.org/

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• Next evolution of Service-Oriented Architecture

(SOA) to Microservices

– Suites of software applications composed of independently

deployable services

– Loosely coupled services

– Fine-grained, meaning small in size and scope

– Light-weight protocols

– Independently managed

– Delivering systems as a set of constrained, granular,

independent collaborating services

• Value of Microservice Architectures

– Enforces Isolation for resilience and elasticity

– Ability to create and deploy fixes independently

– Limiting the reach of defects

– Minimizes the need for specialized personnel knowledge

– Can be assembled in different ways to produce different results

– The independent services can be composed together to

cooperate, providing sophisticated business services

4

Lexicon – Microservice Architecture

Microservice Architectures maximizes the number of ‘services’ to build on

Microservices

Benefits

Loose Coupling

Greater Fault Tolerance

Simplicity

Business Agility

Thru Isolation &

Compartmentalization

Enabler of Continuous/

Integration Delivery

Services can evolve independently

Service teams can deliver independently

Each service can focus on

doing one thing well

Single Responsibility Principle

SOA Monolith

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• MOSA Definition

• A modular design that uses major system interfaces between major platforms/systems/components

• Ensures major system interfaces use widely supported and consensus-based standards

• Allows major system components severability at the appropriate level to be added/removed/replaced

• MOSA intent is to:

• Support a more rapid evolution of capabilities and technologies throughout the product life cycle

• Ensure architecture modularity, open systems standards, and appropriate business practices.

• Expectation is MOSA delivers:

• Enhance competition

• Facilitate technology refresh

• Incorporate innovation

5

Lexicon - MOSA

MOSA employs standards to allow component replacement

• Enable cost savings/cost avoidance

• Improve interoperability

References
▪ https://www.dsp.dla.mil/Programs/MOSA/

▪ https://ac.cto.mil/mosa/

https://ac.cto.mil/wp-content/uploads/2020/06/MOSA-Ref-Frame-May2020.pdf

Enhance
Competition

Facilitate
Technology

Refresh

Incorporate
Innovation

Enable cost
savings/

avoidance

Improve
Interoperabili

ty

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• Agile methodologies deliver capabilities quickly at

lower risk

– Incremental deliveries on a regular cadence

– Short cycle times get things to users for evaluation

• Experimentation allows new technologies to be

evaluated

– “Fail Fast” methodology to determine what works and what doesn’t

– No long development cycles

• Minimal Viable Product (MVP) can be found and

refined

– Many times the “most important features” evolve

– Eliminating unnecessary features can save cost and schedule

• Testing early and often reduces tail end schedule risk

– “Test gets compressed” mentality changes to “shift left”

6

Speed of Agility

Agile shortens timelines to get things into customer’s hands

Dr Ian Mitchell, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Waterfallvsagile.jpg

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

7

Agility + MOSA – Contradictory or Complimentary?

Agility provides several of the outcomes MOSA seeks to achieve

Enhance
Competition

Facilitate
Technology

Refresh

Incorporate
Innovation

Enable cost
savings/

avoidance

Improve
Interoperabi

lity

MOSA Benefits

Enable cost savings/cost avoidance
▪ Risk mitigation and rapid fielding support cost

avoidance through early testing

▪ Customers can focus on MVP

Incorporate innovation
▪ Experimentation and team-driven priorities

enables innovation

Facilitate technology refresh
▪ Agility can shorten technology refresh cycles

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• Microservices have individual interfaces

– Instead of one large interface, many smaller ones

– Small, concise interfaces are easier to understand

• Deployment can be targeted

– Deploying a single service for a test or a set for added functionality

• Interface changes don’t require all parties aligning schedules

– Interfaces can be versioned and operate concurrently

– Deprecating old interfaces gives time for callers to adapt

• Changing out a microservice provider is low impact

– Can operate the old and new concurrently

– Changing the endpoint can be as easy as a DNS entry

8

Microservice Flexibility

Microservice architectures decouple implementation from interface

User 1

API V1

User 2

API V2

API V1

API V2

API V3

Deprecated API

DNS

Microservice Versions

Large System API Small Concise APIs

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

9

Microservices + MOSA – Can they live together?

Microservices have the potential to aide MOSA objectives

Enhance
Competition

Facilitate
Technology

Refresh

Incorporate
Innovation

Enable cost
savings/

avoidance

Improve
Interoperabi

lity

MOSA Benefits

Enhance competition
▪ Microservices allow competing services to be evaluated

▪ Services can live side by side for comparison or use

Facilitate technology refresh
▪ New versions can co-exist with older ones for refresh

▪ Microservices can be updated independently

Incorporate innovation
▪ Services enable deployment of MVP with rapid iteration

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• But MOSA is looking for interface stability, right?

• A modular design that uses major system interfaces between major

platforms/systems/components

• Ensures major system interfaces use widely supported and consensus-based

standards

• Allows major system components severability at the appropriate level to be

added/removed/replaced

• MOSA focuses on the major systems

– MOSA is silent on the minor systems and components

– There is no clear definition of “major”

• Interfaces are tightly controlled and versioned

– Allowing ad-hoc updates would be chaotic at best

– Version changes go through multiple reviews with many stakeholders

10

MOSA Interface Stability

MOSA’s key concerns are major interface boundaries

Modular Open Systems Approach (MOSA) Reference Frameworks in Defense Acquisition Programs, Deputy

Director for Engineering, Office of the Under Secretary of Defense for Research and Engineering, Director of

Defense Research and Engineering for Advanced Capabilities, May 2020, Distribution Statement A. Approved

for public release. Distribution is unlimited.

https://ac.cto.mil/wp-content/uploads/2020/06/MOSA-Ref-Frame-May2020.pdf

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

11

Adaptability vs. Stability

Ease of change vs. the stability for long contract cycles seem to be at odds

Adaptability Stability
Agile and Microservices provide adaptability

– Both in implementation details and interface changes

– Adding new services or updating them rapidly

– Running concurrently or deviating for specific needs

– Accepting trial and error to ‘learn’ the best approach

– Technology change at the most granular level

– Every microservice is replaceable

MOSA provides interface stability

– Rarely changing interfaces

– Generally, one implementation in the system at a

time

– Technology refresh of large system components

– Competition at the macro level

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• Microservices allows for frequent interface changes

– Agile allows for interfaces to be updated regularly

– MOSA does not allow for interfaces to change in weekly Agile cycles

• Agile experimentation isn’t consensus-based

– MOSA relies on consensus for interfaces

– Microservice changes could be ‘tried’ in an agile increment with a subset of callers

• MOSA is serving a wide range of stakeholders

– Agile has stakeholders, but it does not require consensus

– Microservices could have different versions for different stakeholders

12

So Do they Conflict?

So Agile and Microservices work, but not with MOSA?

Agile

M
ic

ro
s
e
rv

ic
e
s

M
O

S
A

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• While the approaches differ, there are significant synergies

– Changes at the micro-level don’t need to be coordinated

– Microservices can be callers of major interfaces

• Competition enhancement at all levels

– MOSA brings it at major components

– Microservice architectures compete deeper in the architecture

– “Competition” can be capability, not just provider, using Agile

13

Same Objectives, Different Approach

Combining Agile, MOSA, and Microservices are Different but Complementary Approaches

They Serve the Same Objectives

Agile Microservices

• Interoperability can be enhanced

– Rapid microservice adapters can insulate from major changes through

design patterns

• Façade pattern, Delegation pattern, and Proxy pattern

– Interface versioning can be implemented quickly in Agile

https://ac.cto.mil/wp-content/uploads/2020/06/MOSA-Ref-Frame-May2020.pdf

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• Defining Major and Minor Interfaces
– Architecturally defining which interfaces are major and thus MOSA

– Providing API registration for interface selection of minor interfaces

– Using extensible interface protocols

• E.g. Adding optional content to JSON messages

• Intelligent Routing
– Routing data based on the recipient’s needs

– Changing routing rules to old or new service implementations

– Identifying interfaces that are backwards compatible or where multiple versions could co-exist

14

Architectural Strategies

Multiple strategies can be used to marry the approaches

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• Data Adaptation
– A microservice can be inserted to adapt new interface calls to old

• E.g. Stripping new fields so that a recipient can continue to function

– Developed, tested, and deployed quickly through Agile

– When the recipient is ready for the new interface, the microservice is disabled or updated

• Maximizing Stateless Processing
– Decoupling data state between components to reduce major interface dependency

– Using proxy interfaces to deal with ‘extra’ data across major interface points

• Using Big Data Approaches
– Segregating responsibilities to the lowest levels

– Using data aggregation services to initiate major interface calls

15

Architectural Strategies cont.

MOSA objectives are all about dependencies, minimize those

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

Data Services Layer
Data Microservices

16

Reference Architecture

Microservices can bridge the gaps

Business Logic Application Layer

Transport Layer

Routing

Common

Microservices

Time

Location

Validation

Scanner

Common Application Microservices

Microservice

Microservice

Interface Compliant Application

Application

Microservice Microservice

Microservice Microservice

Non-Compliant Application

Application

Microservice Microservice

Microservice Microservice

Translation Microservice

Correlation

Positioning

Archival

Microservice Microservice

App Service

Catalog

Service

Catalog
Older version Compliant

Application

Application

Version adapter Microservice

CORBA DDS Web Services Other

Data

Adaptation

Microservice

Data Archival

Microservice

Microservice
Data Routing

Microservice

Route

Monitoring

Microservice

Database
Network

Storage

Database

Storage

Application

Persistent

Storage

Application Data

Microservice

Data

Management

Microservice

Data Service

Catalog

Microservice

Microservice

MOSA

Interface

MOSA

Interface

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

17

Strangler Pattern: Incremental Modernization

A software pattern of incremental migration of a legacy system by replacing existing
functionalities with new applications and services in a phased approach.

Clients Legacy

Application
Database

Strangler

Service
Clients Legacy

Application
Database

Clients
Database

Strangler

Service
Clients

Legacy

Application

Database

Strangler

Service

1 Original legacy application

2 Strangler as a pass through

3 Strangler taking over some

responsibilities

4 Complete transition to Strangler

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

Business Logic Layer

• Use Strangler pattern for incremental modernization to an application by adding microservices

• Agile methods provide boundaries to limit risk each increment

18

Agile Migration Paths

Migration doesn’t have to be a “big bang”

Interface Compliant Application

Application

Initial State Pass 1 State Pass 2 State Pass N State

Transport Layer

Routing

Data Services Layer

Database

Database

Storage

Application

Business Logic Layer

Interface Compliant Application

Application

Positioning

Microservice

Transport Layer

Routing

Data Services Layer

Database
Database

Storage

Application

Business Logic Layer

Interface Compliant Application

Application

Transport Layer

Routing

Data Services Layer

Database

Database Storage

Application

HSA

Microservice

Positioning

Microservice

HSA

Microservice

Deduplication

Microservice

Archival

Microservice

Business Logic Layer

Interface Compliant Application

Application

Transport Layer

Routing

Data Services Layer

DatabaseDatabase Storage

Application

Positioning

Microservice
HSA

Microservice

Deduplication

Microservice

Other

Microservice

Adaptation

Microservice

Archival

Microservice

Other

Microservice

Calculation

Microservice
Other

Microservice

C
o

m
m

o
n

T
im

e

M
ic

ro
s
e
rv

ic
e

V
a
lid

a
tio

n

M
ic

ro
s
e
rv

ic
e

O
th

e
r

M
ic

ro
s
e
rv

ic
e

Agile Increment 1 Agile Increment 2 Agile Increment N

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• Soda manufacturer vending machines
– Vending machines call microservice

• Implemented as Lambda function

– Data is conformed to major payment APIs

19

Commercial Example

– Newer vending machines updated to use latest interface features

– Microservices send notifications to users

Soda

Notification

Microservice
Payment Data Validation

API Gateway Payment Processing

Endpoint

Customer

Recipient

SMS

Notification

Connectivity

User Preferences

“aws-icons-for-plantuml” by awslabs is licensed under CC BY-ND 2.0.

aws-icons-for-plantuml/LICENSE at main · awslabs/aws-icons-for-plantuml · GitHub

https://github.com/awslabs/aws-icons-for-plantuml

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

https://github.com/awslabs/aws-icons-for-plantuml/blob/main/LICENSE
https://github.com/awslabs/aws-icons-for-plantuml

• Amazon Selling Partner interface
– Supports multiple versions of agreed to static interfaces

– Concurrent execution routed by URL

– Similar to other Amazon and AWS interfaces

20

Commercial Example

Selling Partner

API VersionsAuthentication

2020-09

2021-06

2022-08

Role

Lambda Function

Microservice

Shared Storage

API Gateway

Additional Client

Microservice

– Data adaptation and role restrictions

– Callers can easily abstract their version away

“aws-icons-for-plantuml” by awslabs is licensed under CC BY-ND 2.0.

aws-icons-for-plantuml/LICENSE at main · awslabs/aws-icons-for-plantuml · GitHub

https://github.com/awslabs/aws-icons-for-plantuml
Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

https://github.com/awslabs/aws-icons-for-plantuml/blob/main/LICENSE
https://github.com/awslabs/aws-icons-for-plantuml

21

What about DevSecOps?

DevSecOps supports MOSA, Agile, and Microservice approaches

Kharnagy, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

https://upload.wikimedia.org/wikipedia/commons/0/05/Devops-toolchain.svg

Automated verification finds issues early

– Validates that the interfaces didn’t change

– Regression tests the microservice functionality

– Allows validation of multiple versions

concurrently in operations

DevSecOps allows rapid deployment with

reduced risk posture

– Deploys micro-services at the lower levels while

maintaining interface code stability

– Reduces risk of full system deployments

– Significantly reduces or eliminates downtime for

deployments

Improves security posture

– Allows targeted patching of critical security

changes

– Enables automated security testing on granular

level

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

• UX is Not Just for UI’s: Design the interface contract FIRST with stakeholders
– Tools: e.g. Swagger

• Patterns: Use them!
– Recommended book: https://www.manning.com/books/soa-patterns

• Use Frameworks
– e.g. Spring

• No one tool is right for every job

• Adopt and Integrate Chaos Engineering

22

Microservice Recommendations

¹ https://principlesofchaos.org/

– Chaos Engineering is the discipline of experimenting on

a distributed system in order to build confidence in the

system’s capability to withstand turbulent conditions in

production.¹

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

23

Thank you.

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

24

Authors

Darryl NelsonKurt Mohr
Darryl Nelson is the Technology Director for Data Engineering

and Advanced Software at Raytheon Intelligence & Space.

Darryl’s previous roles include Chief Engineer, Corporate

Technology Area Director, and Chief Scientist. He currently

specializes in scalable system architectures with a focus on

operationalizing AI, distributed data management, and

continuously evolving software systems. Darryl is a US Army

veteran with an interest in the impact of software on the future

of warfare.

Kurt Mohr is an Engineering Fellow with over 20 years in

Software Engineering and Architecture spanning both

commercial and defense. He has a strong background in

multiple Agile development methodologies including Scrum,

Kanban, and Scaled Agile. Kurt is the Software Technical

Director for Raytheon Intelligence & Space Common

Engineering. Kurt has architectural experience with all forms of

software systems including cloud, bare metal, and embedded

as well as highly scalable distributed computing.

Raytheon Technologies Approved for Public Release

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

